Zebrafish: unraveling genetic complexity through duplicated genes.

Maliha Tasnim, Preston Wahlquist, Jonathon T Hill
Author Information
  1. Maliha Tasnim: Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
  2. Preston Wahlquist: Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
  3. Jonathon T Hill: Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA. jhill@byu.edu.

Abstract

The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.

Keywords

References

  1. Development. 2021 Jun 1;148(11): [PMID: 34096572]
  2. FEBS J. 2005 Jul;272(14):3561-71 [PMID: 16008556]
  3. Dev Genes Evol. 2006 Oct;216(10):647-54 [PMID: 16733737]
  4. Comp Biochem Physiol Part D Genomics Proteomics. 2021 Sep;39:100857 [PMID: 34111665]
  5. PLoS Genet. 2007 Jan 26;3(1):e17 [PMID: 17257055]
  6. Genesis. 2001 Jul;30(3):129-33 [PMID: 11477690]
  7. Nat Biotechnol. 2013 Mar;31(3):227-9 [PMID: 23360964]
  8. Hum Mol Genet. 2010 Oct 1;19(19):3835-43 [PMID: 20650958]
  9. Elife. 2023 Jun 12;12: [PMID: 37306301]
  10. Front Pharmacol. 2022 Mar 15;13:835827 [PMID: 35370740]
  11. Exp Eye Res. 2010 May;90(5):572-82 [PMID: 20152834]
  12. BMC Biol. 2017 Sep 1;15(1):78 [PMID: 28863777]
  13. BMC Genomics. 2015 Feb 22;16:113 [PMID: 25765044]
  14. Pharmacogenomics. 2013 Dec;14(16):2023-34 [PMID: 24279857]
  15. Genome Biol. 2018 Nov 28;19(1):209 [PMID: 30486862]
  16. Dev Comp Immunol. 2014 Sep;46(1):11-23 [PMID: 24631581]
  17. Mol Biol Evol. 2023 Dec 1;40(12): [PMID: 37979156]
  18. Dev Genes Evol. 2020 Jan;230(1):27-36 [PMID: 31838648]
  19. Evolution. 2009 Jun;63(6):1574-92 [PMID: 19222565]
  20. PLoS Genet. 2008 Feb;4(2):e29 [PMID: 18282108]
  21. Redox Biol. 2017 Oct;13:207-218 [PMID: 28582729]
  22. Front Neurol. 2019 Mar 28;10:289 [PMID: 31001185]
  23. Front Mol Neurosci. 2022 Oct 13;15:940484 [PMID: 36311026]
  24. Genome Res. 2007 May;17(5):545-55 [PMID: 17387144]
  25. Genetics. 2000 Jan;154(1):459-73 [PMID: 10629003]
  26. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  27. Mol Biol Evol. 2006 Jan;23(1):121-36 [PMID: 16162861]
  28. Heliyon. 2023 Mar 13;9(3):e14557 [PMID: 36950605]
  29. BMC Evol Biol. 2004 Sep 17;4:33 [PMID: 15377393]
  30. FEBS J. 2020 Apr;287(7):1262-1283 [PMID: 32250558]
  31. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14603-6 [PMID: 14638945]
  32. Nat Rev Genet. 2010 Feb;11(2):97-108 [PMID: 20051986]
  33. Genome Res. 2003 Jun;13(6A):1067-81 [PMID: 12743018]
  34. Front Cell Dev Biol. 2021 Feb 11;8:598634 [PMID: 33681181]
  35. Front Cell Dev Biol. 2022 May 13;10:798812 [PMID: 35646905]
  36. PLoS Comput Biol. 2016 Jul 12;12(7):e1004763 [PMID: 27404731]
  37. J Exp Bot. 2015 Dec;66(22):6991-7003 [PMID: 26417017]
  38. Hum Mol Genet. 2004 Jan 15;13(2):247-55 [PMID: 14645199]
  39. Development. 2002 May;129(10):2339-54 [PMID: 11973267]
  40. Evol Appl. 2022 Sep 29;15(11):1834-1845 [PMID: 36426117]
  41. Physiol Genomics. 2000 Mar 13;2(2):49-51 [PMID: 11015581]
  42. Genes (Basel). 2017 May 25;8(6): [PMID: 28587062]
  43. Proc Biol Sci. 2012 Dec 22;279(1749):5048-57 [PMID: 22977152]
  44. Cancers (Basel). 2023 Aug 08;15(16): [PMID: 37627052]
  45. Anim Front. 2019 Jun 25;9(3):68-77 [PMID: 32002264]
  46. Dev Genes Evol. 2023 Jun;233(1):25-34 [PMID: 37184573]
  47. Genes (Basel). 2021 Aug 31;12(9): [PMID: 34573358]
  48. Mol Biol Evol. 2013 Jan;30(1):140-53 [PMID: 22949522]
  49. J Genet. 2013 Apr;92(1):155-61 [PMID: 23640422]
  50. Genome Biol. 2022 Nov 8;23(1):235 [PMID: 36348461]
  51. Dev Cell. 2021 Feb 22;56(4):478-493.e11 [PMID: 33476555]
  52. J Biomed Biotechnol. 2012;2012:817341 [PMID: 22701308]
  53. Dev Dyn. 2011 Jun;240(6):1548-57 [PMID: 21448936]
  54. Plant Physiol. 2018 Mar;176(3):1932-1938 [PMID: 29295942]
  55. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14918-23 [PMID: 26578810]
  56. Genetics. 2019 Aug;212(4):1301-1319 [PMID: 31175226]
  57. Science. 1998 Nov 27;282(5394):1711-4 [PMID: 9831563]
  58. PLoS Biol. 2005 Oct;3(10):e314 [PMID: 16128622]
  59. Nat Rev Drug Discov. 2021 Aug;20(8):611-628 [PMID: 34117457]
  60. Breast. 2022 Apr;62:114-122 [PMID: 35158152]
  61. Elife. 2022 Jun 10;11: [PMID: 35686729]
  62. Genome Biol Evol. 2021 Oct 1;13(10): [PMID: 34480557]
  63. PLoS Biol. 2019 Nov 22;17(11):e3000519 [PMID: 31756186]
  64. PLoS One. 2009 Sep 17;4(9):e7026 [PMID: 19759899]
  65. Mol Vis. 2018 Jul 19;24:443-458 [PMID: 30078982]
  66. Gene Expr Patterns. 2020 Sep;37:119126 [PMID: 32663618]
  67. Genetics. 2017 Apr;205(4):1551-1572 [PMID: 28193729]
  68. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22172-7 [PMID: 21127261]
  69. Mol Syst Biol. 2007;3:86 [PMID: 17389874]
  70. PLoS Biol. 2004 Jul;2(7):E206 [PMID: 15252449]
  71. Brain. 2017 Mar 1;140(3):669-683 [PMID: 28073790]
  72. Nat Rev Genet. 2008 Dec;9(12):938-50 [PMID: 19015656]
  73. Nat Commun. 2016 Jan 19;7:10397 [PMID: 26783159]
  74. Gene Expr Patterns. 2010 Jun;10(4-5):167-76 [PMID: 20398800]
  75. New Phytol. 2020 Jan;225(2):1011-1022 [PMID: 31469915]
  76. BMC Mol Cell Biol. 2020 Jan 22;21(1):3 [PMID: 31969120]
  77. PLoS One. 2015 Mar 25;10(3):e0121330 [PMID: 25806532]
  78. Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1661-79 [PMID: 11604130]
  79. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  80. Mol Genet Genomics. 2014 Dec;289(6):1045-60 [PMID: 25092473]
  81. Plant Cell. 2022 Jul 4;34(7):2466-2474 [PMID: 35253876]
  82. Mol Biol Evol. 2018 Dec 1;35(12):2886-2899 [PMID: 30252115]
  83. Dev Biol. 2013 Jun 15;378(2):194-9 [PMID: 23501471]
  84. Cold Spring Harb Perspect Med. 2012 Dec 01;2(12):a011627 [PMID: 23209182]
  85. J Comp Physiol B. 2011 Dec;181(8):1011-21 [PMID: 21614507]
  86. PLoS Genet. 2011 Oct;7(10):e1002338 [PMID: 22028674]
  87. Nature. 2019 Apr;568(7751):193-197 [PMID: 30944477]
  88. RNA. 2011 May;17(5):792-8 [PMID: 21398401]
  89. BMC Dev Biol. 2008 May 16;8:53 [PMID: 18485195]
  90. Development. 2017 Oct 1;144(19):3487-3498 [PMID: 28807900]
  91. Funct Integr Genomics. 2024 Mar 22;24(2):62 [PMID: 38514486]
  92. BMC Genomics. 2012 Jun 15;13:246 [PMID: 22702965]
  93. Surv Ophthalmol. 2021 Nov-Dec;66(6):1031-1050 [PMID: 33675823]
  94. Plant Cell. 2004 Jul;16(7):1679-91 [PMID: 15208398]
  95. Dev Biol. 2022 Jan;481:201-214 [PMID: 34756968]
  96. PLoS One. 2008 Aug 28;3(8):e3091 [PMID: 18769480]
  97. Int J Immunogenet. 2008 Jun;35(3):179-92 [PMID: 18397301]
  98. Nature. 2018 Dec;564(7734):64-70 [PMID: 30464347]
  99. Theranostics. 2020 Jan 1;10(4):1479-1499 [PMID: 32042317]
  100. Int J Biochem Cell Biol. 2014 Sep;54:350-5 [PMID: 24842102]
  101. EMBO Rep. 2012 Dec;13(12):1145-51 [PMID: 23070367]
  102. Life Sci Alliance. 2023 Aug 29;6(11): [PMID: 37643867]
  103. Curr Genomics. 2010 Dec;11(8):578-83 [PMID: 21629435]
  104. FEBS J. 2006 Feb;273(3):481-90 [PMID: 16420472]
  105. BMC Dev Biol. 2010 Sep 22;10:100 [PMID: 20860823]
  106. Curr Opin Cell Biol. 1999 Dec;11(6):699-704 [PMID: 10600714]
  107. Plant Physiol. 2016 Aug;171(4):2294-316 [PMID: 27288366]
  108. Front Neurosci. 2020 Dec 15;14:611904 [PMID: 33384581]
  109. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10467-72 [PMID: 26240372]
  110. Int J Mol Sci. 2022 Sep 01;23(17): [PMID: 36077385]
  111. PLoS Biol. 2012;10(12):e1001446 [PMID: 23239941]
  112. Gene. 2004 Aug 18;338(1):65-74 [PMID: 15302407]
  113. Nature. 2017 Mar 2;543(7643):122-125 [PMID: 28178237]
  114. J Exp Zool B Mol Dev Evol. 2022 Jul;338(5):301-313 [PMID: 35226401]
  115. J Exp Biol. 2020 Jan 23;223(Pt 2): [PMID: 31836650]
  116. Genes (Basel). 2020 Sep 24;11(10): [PMID: 32987694]
  117. J Exp Zool B Mol Dev Evol. 2007 Jan 15;308(1):58-73 [PMID: 16838295]
  118. Dev Dyn. 2013 May;242(5):485-502 [PMID: 23441045]
  119. Comput Struct Biotechnol J. 2021 Mar 16;19:1579-1594 [PMID: 33868595]
  120. Exp Mol Med. 2021 Mar;53(3):310-317 [PMID: 33649498]
  121. Int J Mol Sci. 2022 Mar 24;23(7): [PMID: 35408902]
  122. Brain. 2023 Sep 1;146(9):3885-3897 [PMID: 37006128]
  123. Immunogenetics. 1997;46(2):129-34 [PMID: 9162099]
  124. Int J Mol Sci. 2019 Mar 14;20(6): [PMID: 30875831]
  125. PLoS One. 2013 Sep 10;8(9):e73951 [PMID: 24040125]
  126. J Bone Miner Res. 2021 Mar;36(3):436-458 [PMID: 33484578]
  127. Nature. 2012 Jan 09;481(7381):360-4 [PMID: 22230956]
  128. Genome Biol. 2019 Feb 21;20(1):38 [PMID: 30791939]
  129. Mol Biol Evol. 2006 May;23(5):887-92 [PMID: 16368775]
  130. Genome Res. 2000 Dec;10(12):1890-902 [PMID: 11116085]
  131. Front Mol Neurosci. 2022 May 19;15:826183 [PMID: 35663268]
  132. PLoS One. 2009 Sep 30;4(9):e7261 [PMID: 19789708]
  133. Genome Biol. 2007;8(10):R209 [PMID: 17916239]
  134. Front Cell Dev Biol. 2019 Feb 01;7:5 [PMID: 30775367]
  135. BMC Evol Biol. 2005 Apr 14;5:28 [PMID: 15831095]
  136. Bioessays. 2008 Apr;30(4):367-73 [PMID: 18348184]
  137. PLoS One. 2020 Mar 05;15(3):e0219106 [PMID: 32134913]
  138. BMC Dev Biol. 2013 Jul 02;13:26 [PMID: 23819519]
  139. Mol Phylogenet Evol. 2013 Feb;66(2):469-78 [PMID: 22846683]
  140. BMC Genomics. 2005 Nov 04;6:152 [PMID: 16271140]
  141. Genome Res. 2014 Jan;24(1):142-53 [PMID: 24179142]
  142. Development. 2005 Mar;132(5):1069-83 [PMID: 15689370]
  143. Curr Opin Ophthalmol. 2017 Sep;28(5):436-447 [PMID: 28598868]
  144. Trends Genet. 2010 Oct;26(10):425-30 [PMID: 20708291]
  145. Brief Funct Genomics. 2018 Sep 27;17(5):329-338 [PMID: 29579140]
  146. Front Mol Neurosci. 2022 Apr 28;15:821012 [PMID: 35571373]
  147. Endocrinol Diabetes Metab Case Rep. 2022 Aug 1;2022: [PMID: 35979842]
  148. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  149. J Biol Chem. 2012 Feb 10;287(7):4609-27 [PMID: 22174413]
  150. Int J Mol Sci. 2021 Oct 21;22(21): [PMID: 34768779]
  151. J Biol Chem. 1978 Mar 10;253(5):1357-70 [PMID: 627542]
  152. J Clin Oncol. 2005 Aug 1;23(22):5007-18 [PMID: 16051952]
  153. Nature. 1981 May 28;291(5813):293-6 [PMID: 7248006]
  154. EMBO J. 2001 May 15;20(10):2587-95 [PMID: 11350948]
  155. Dev Dyn. 2000 Mar;217(3):279-92 [PMID: 10741422]
  156. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1638-43 [PMID: 14757817]
  157. Hum Genet. 2001 Mar;108(3):255-66 [PMID: 11354640]
  158. PLoS Genet. 2018 Sep 12;14(9):e1007652 [PMID: 30208061]
  159. Vis Neurosci. 2011 Jul;28(4):325-35 [PMID: 21447259]
  160. J Clin Invest. 2012 Jul;122(7):2337-43 [PMID: 22751109]
  161. Trends Genet. 2022 Jan;38(1):59-72 [PMID: 34294428]
  162. Mol Endocrinol. 2012 Apr;26(4):696-709 [PMID: 22403172]
  163. Trends Genet. 2005 Oct;21(10):559-67 [PMID: 16099069]
  164. J Neurosci. 2010 May 19;30(20):7111-20 [PMID: 20484654]
  165. ACS Chem Neurosci. 2016 May 18;7(5):588-98 [PMID: 26822114]
  166. Dis Model Mech. 2015 Mar;8(3):295-309 [PMID: 25633982]
  167. Cells. 2022 Jan 28;11(3): [PMID: 35159264]

Grants

  1. R15 HD098969/NICHD NIH HHS
  2. R15HD098969/Eunice Kennedy Shriver National Institute of Child Health and Human Development

MeSH Term

Animals
Zebrafish
Gene Duplication
Evolution, Molecular
Genes, Duplicate
Gene Regulatory Networks

Word Cloud

Created with Highcharts 10.0.0geneduplicatedgenesgeneticfunctionzebrafishstructurewithinuniqueinsightsZebrafishduplicationpairproteinstudieswillmodelscomplexityinvaluablemodelorganismdevelopmentaldiseaseresearchAlthoughhighconservationhumansoftencitedjustificationuseharborsoft-ignoredcharacteristicsmayprovidealongteleostfishunderwentadditionalroundwholegenomesplittetrapods-resultingabundancecomparedvertebratesevolveddistinctwaysensuing350millionyearsThusnuanceddifferencescreateidentityinvestigatingmemberstogethercanelucidatemechanismsunderlydrivecomplexinterplaybiologicalsystemssignaltransductioncascadesregulatorynetworksevolutiontissueorgancrucialleverageexploremoleculardynamicsfar-reachingimplicationsbasicsciencetherapeuticdevelopmentreviewroleduplicationsexistingdivergenceretentionfollowingeventsalsohighlightexamplescomparingyieldedkeyregulationZebrafish:unravelingGeneGeneticNeofunctionalizationNon-functionalizationProtein-encodingSubfunctionalization

Similar Articles

Cited By (1)