Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status.

Okyaz Eminaga, Hubert Lau, Eugene Shkolyar, Eva Wardelmann, Mahmoud Abbas
Author Information
  1. Okyaz Eminaga: AI Vobis, Palo Alto, California, United States of America. ORCID
  2. Hubert Lau: Department of Pathology and Laboratory Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America.
  3. Eugene Shkolyar: Department of Urology, Stanford University School of Medicine, Palo Alto, California, United States of America.
  4. Eva Wardelmann: Department of Pathology, University Hospital of Muenster, M��nster, Germany.
  5. Mahmoud Abbas: Department of Pathology, University Hospital of Muenster, M��nster, Germany. ORCID

Abstract

Smoke exposure is associated with bladder cancer (BC). However, little is known about whether the histologic changes of BC can predict the status of smoke exposure. Given this knowledge gap, the current study investigated the potential association between histology images and smoke exposure status. A total of 483 whole-slide histology images of 285 unique cases of BC were available from multiple centers for BC diagnosis. A deep learning model was developed to predict the smoke exposure status and externally validated on BC cases. The development set consisted of 66 cases from two centers. The external validation consisted of 94 cases from remaining centers for patients who either never smoked cigarettes or were active smokers at the time of diagnosis. The threshold for binary categorization was fixed to the median confidence score (65) of the development set. On external validation, AUC was used to assess the randomness of predicted smoke status; we utilized latent feature presentation to determine common histologic patterns for smoke exposure status and mixed effect logistic regression models determined the parameter independence from BC grade, gender, time to diagnosis, and age at diagnosis. We used 2,000-times bootstrap resampling to estimate the 95% Confidence Interval (CI) on the external validation set. The results showed an AUC of 0.67 (95% CI: 0.58-0.76), indicating non-randomness of model classification, with a specificity of 51.2% and sensitivity of 82.2%. Multivariate analyses revealed that our model provided an independent predictor for smoke exposure status derived from histology images, with an odds ratio of 1.710 (95% CI: 1.148-2.54). Common histologic patterns of BC were found in active or never smokers. In conclusion, deep learning reveals histopathologic features of BC that are predictive of smoke exposure and, therefore, may provide valuable information regarding smoke exposure status.

References

  1. Nat Biomed Eng. 2021 Jun;5(6):555-570 [PMID: 33649564]
  2. Control Clin Trials. 2000 Dec;21(6 Suppl):329S-348S [PMID: 11189686]
  3. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  4. Int J Cancer. 2012 Feb 15;130(4):896-901 [PMID: 21412765]
  5. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  6. Cell Stem Cell. 2011 Jan 7;8(1):16-29 [PMID: 21211780]
  7. Eur Urol. 2002 Nov;42(5):469-74 [PMID: 12429156]
  8. Oncol Lett. 2017 May;13(5):3873-3881 [PMID: 28529598]
  9. J Natl Cancer Inst. 1969 Jul;43(1):303-6 [PMID: 5796395]
  10. Control Clin Trials. 2000 Dec;21(6 Suppl):273S-309S [PMID: 11189684]
  11. J Natl Cancer Inst. 2014 Oct 01;106(11): [PMID: 25274579]
  12. Cancer. 1999 Dec 1;86(11):2337-45 [PMID: 10590376]
  13. Cancer Cell. 2020 Nov 9;38(5):672-684.e6 [PMID: 33096023]
  14. Oncoimmunology. 2018 Jul 30;7(10):e1494677 [PMID: 30288364]
  15. Urol Oncol. 2015 Feb;33(2):65.e9-17 [PMID: 25023787]
  16. Eur J Epidemiol. 2016 Apr;31(4):337-50 [PMID: 27209009]
  17. Cancer Causes Control. 1997 May;8(3):346-55 [PMID: 9498898]
  18. N Engl J Med. 1978 Jun 8;298(23):1277-81 [PMID: 651978]
  19. Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):727-741 [PMID: 36409317]
  20. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1560-E1569 [PMID: 29378943]
  21. BMJ. 2013 Jan 21;346:e8668 [PMID: 23338004]
  22. Oncogene. 2002 Oct 21;21(48):7435-51 [PMID: 12379884]
  23. PLoS One. 2018 Mar 23;13(3):e0194039 [PMID: 29570711]
  24. Toxicol Lett. 2022 Mar 1;357:11-19 [PMID: 34953943]
  25. Thorax. 2007 Jan;62(1):43-50 [PMID: 16825337]
  26. Sci Rep. 2018 Feb 21;8(1):3395 [PMID: 29467373]
  27. JAMA. 2011 Aug 17;306(7):737-45 [PMID: 21846855]
  28. J Urol. 1998 Aug;160(2):618 [PMID: 9679939]
  29. Cell Rep. 2019 Dec 10;29(11):3367-3373.e4 [PMID: 31825821]
  30. Respir Res. 2020 Jun 26;21(1):161 [PMID: 32586329]
  31. Cancer Res. 1988 Jul 1;48(13):3853-5 [PMID: 3378221]
  32. PLoS Med. 2019 Jan 24;16(1):e1002730 [PMID: 30677016]
  33. J Dent Res. 2012 Feb;91(2):142-9 [PMID: 21876032]
  34. Sci Adv. 2020 Jan 22;6(4):eaaw6938 [PMID: 32010778]
  35. Oncotarget. 2017 Jan 31;8(5):8791-8800 [PMID: 28060741]
  36. Urol Int. 2008;81(3):247-51 [PMID: 18931537]
  37. Urol Oncol. 2014 Jan;32(1):32.e11-6 [PMID: 23433891]
  38. Cancer. 1989 Sep 1;64(5):983-7 [PMID: 2758391]
  39. BMC Med. 2010 Mar 22;8:17 [PMID: 20307281]
  40. Environ Health. 2012 Jun 28;11 Suppl 1:S11 [PMID: 22759493]
  41. Epidemiology. 1994 Mar;5(2):218-25 [PMID: 8172997]
  42. Comput Med Imaging Graph. 2021 Mar;88:101820 [PMID: 33453648]
  43. Lancet. 2021 Jun 19;397(10292):2337-2360 [PMID: 34051883]
  44. Urology. 2015 Nov;86(5):968-72 [PMID: 26190088]

MeSH Term

Humans
Urinary Bladder Neoplasms
Deep Learning
Male
Female
Aged
Middle Aged
Smoking
Aged, 80 and over

Word Cloud

Created with Highcharts 10.0.0exposuresmokeBCstatuscasesdiagnosishistologichistologyimagescenterslearningmodelsetexternalvalidation95%associatedbladderchangespredictdeepdevelopmentconsistedneveractivesmokerstimeAUCusedpatterns0CI:2%1histopathologicSmokecancerHoweverlittleknownwhethercanGivenknowledgegapcurrentstudyinvestigatedpotentialassociationtotal483whole-slide285uniqueavailablemultipledevelopedexternallyvalidated66two94remainingpatientseithersmokedcigarettesthresholdbinarycategorizationfixedmedianconfidencescore65assessrandomnesspredictedutilizedlatentfeaturepresentationdeterminecommonmixedeffectlogisticregressionmodelsdeterminedparameterindependencegradegenderage2000-timesbootstrapresamplingestimateConfidenceIntervalCIresultsshowed6758-076indicatingnon-randomnessclassificationspecificity51sensitivity82Multivariateanalysesrevealedprovidedindependentpredictorderivedoddsratio710148-254CommonfoundconclusionrevealsfeaturespredictivethereforemayprovidevaluableinformationregardingDeepidentifiescancers

Similar Articles

Cited By