Monthly climate prediction using deep convolutional neural network and long short-term memory.

Qingchun Guo, Zhenfang He, Zhaosheng Wang
Author Information
  1. Qingchun Guo: School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China. guoqingchun@lcu.edu.cn. ORCID
  2. Zhenfang He: School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China.
  3. Zhaosheng Wang: National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.

Abstract

Climate change affects plant growth, food production, ecosystems, sustainable socio-economic development, and human health. The different artificial intelligence models are proposed to simulate climate parameters of Jinan city in China, include artificial neural network (ANN), recurrent NN (RNN), long short-term memory neural network (LSTM), deep convolutional NN (CNN), and CNN-LSTM. These models are used to forecast six climatic factors on a monthly ahead. The climate data for 72 years (1 January 1951-31 December 2022) used in this study include monthly average atmospheric temperature, extreme minimum atmospheric temperature, extreme maximum atmospheric temperature, precipitation, average relative humidity, and sunlight hours. The time series of 12 month delayed data are used as input signals to the models. The efficiency of the proposed models are examined utilizing diverse evaluation criteria namely mean absolute error, root mean square error (RMSE), and correlation coefficient (R). The modeling result inherits that the proposed hybrid CNN-LSTM model achieves a greater accuracy than other compared models. The hybrid CNN-LSTM model significantly reduces the forecasting error compared to the models for the one month time step ahead. For instance, the RMSE values of the ANN, RNN, LSTM, CNN, and CNN-LSTM models for monthly average atmospheric temperature in the forecasting stage are 2.0669, 1.4416, 1.3482, 0.8015 and 0.6292 °C, respectively. The findings of climate simulations shows the potential of CNN-LSTM models to improve climate forecasting. Climate prediction will contribute to meteorological disaster prevention and reduction, as well as flood control and drought resistance.

References

  1. Sci Rep. 2021 Sep 23;11(1):18935 [PMID: 34556676]
  2. Science. 2022 Jun 24;376(6600):1416-1421 [PMID: 35737771]
  3. Sci Total Environ. 2023 Feb 20;860:160410 [PMID: 36427740]
  4. Nat Commun. 2022 Dec 12;13(1):7681 [PMID: 36509809]
  5. Model Earth Syst Environ. 2022;8(4):4843-4851 [PMID: 35434264]
  6. Sci Total Environ. 2023 Nov 10;898:165568 [PMID: 37467992]
  7. Environ Sci Pollut Res Int. 2021 Mar;28(9):11672-11682 [PMID: 33415612]
  8. Nature. 2023 Aug;620(7972):47-60 [PMID: 37532811]
  9. Sci Total Environ. 2023 Dec 10;903:166168 [PMID: 37586538]
  10. Sci Rep. 2024 Jan 8;14(1):808 [PMID: 38191680]
  11. Nature. 2023 Jul;619(7970):533-538 [PMID: 37407823]
  12. Sci Total Environ. 2022 Aug 15;834:155324 [PMID: 35452742]
  13. Sci Total Environ. 2023 Nov 25;901:166430 [PMID: 37607626]
  14. Chemosphere. 2023 Nov;340:139886 [PMID: 37611770]
  15. Environ Monit Assess. 2023 Feb 9;195(3):379 [PMID: 36757488]
  16. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2216158120 [PMID: 37155849]
  17. Sci Adv. 2023 Mar 10;9(10):eabo1638 [PMID: 36897946]
  18. Nat Commun. 2024 Jun 14;15(1):5101 [PMID: 38876997]
  19. Sci Total Environ. 2023 Apr 20;870:161976 [PMID: 36740065]
  20. Toxics. 2023 Feb 24;11(3): [PMID: 36976975]
  21. Sci Adv. 2024 Feb 9;10(6):eadj7250 [PMID: 38324696]
  22. Environ Sci Pollut Res Int. 2023 Feb;30(9):22319-22329 [PMID: 36284044]
  23. Sens Int. 2023;4:100229 [PMID: 36742993]
  24. Toxics. 2023 Jan 03;11(1): [PMID: 36668777]
  25. Sci Rep. 2024 Jun 1;14(1):12599 [PMID: 38824165]
  26. Nature. 2023 Jul;619(7970):526-532 [PMID: 37407824]
  27. Nature. 2023 Oct;622(7982):301-307 [PMID: 37648861]
  28. Nature. 2019 Sep;573(7775):568-572 [PMID: 31534218]

Word Cloud

Created with Highcharts 10.0.0modelsclimateCNN-LSTMatmospherictemperatureproposedneuralnetworkusedmonthly1averageerrorforecastingClimateartificialincludeANNNNRNNlongshort-termmemoryLSTMdeepconvolutionalCNNaheaddataextremetimemeanhybridmodelcompared0predictionchangeaffectsplantgrowthfoodproductionecosystemssustainablesocio-economicdevelopmenthumanhealthdifferentintelligencesimulateparametersJinancityChinarecurrentforecastsixclimaticfactors72 yearsJanuary1951-31December2022studyminimummaximumprecipitationrelativehumiditysunlighthoursseries12 monthdelayedinputsignalsefficiencyexaminedutilizingdiverseevaluationcriterianamelyabsoluterootsquareRMSEcorrelationcoefficientRmodelingresultinheritsachievesgreateraccuracysignificantlyreducesonemonthstepinstanceRMSE valuesstage206694416348280156292 °CrespectivelyfindingssimulationsshowspotentialimprovewillcontributemeteorologicaldisasterpreventionreductionwellfloodcontroldroughtresistanceMonthlyusing

Similar Articles

Cited By