Harmine acts as a quorum sensing inhibitor decreasing the virulence and antibiotic resistance of Pseudomonas aeruginosa.

Pei Chen, Jiangyue Qin, Helene K Su, Lianming Du, Qianglin Zeng
Author Information
  1. Pei Chen: Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China.
  2. Jiangyue Qin: General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610081, China.
  3. Helene K Su: Seven Lakes High School, Katy, TX, 77494, USA.
  4. Lianming Du: Institute for Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China. adullb@qq.com.
  5. Qianglin Zeng: Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China. zengqianglin@cdu.edu.cn.

Abstract

BACKGROUND: As antimicrobial resistance (AMR) has become a global health crisis, new strategies against AMR infection are urgently needed. Quorum sensing (QS), responsible for bacterial communication and pathogenicity, is among the targets for anti-virulence drugs that thrive as one of the promising treatments against AMR infection.
METHODS: We identified a natural compound, Harmine, through virtual screening based on three QS receptors of Pseudomonas aeruginosa (P. aeruginosa) and explored the effect of Harmine on QS-controlled and pathogenicity-related phenotypes including pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14. The protective effect of Harmine on Caenorhabditis elegans (C. elegans) and mice infection models was determined and the synergistic effect of Harmine combined with common antibiotics was explored. The underlaying mechanism of Harmine's QS inhibitory effect was illustrated by molecular docking analysis, transcriptomic analysis, and target verification assay.
RESULTS: In vitro results suggested that Harmine possessed QS inhibitory effects on pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14, and in vivo results displayed Harmine's protective effect on C. elegans and mice infection models. Intriguingly, Harmine increased susceptibility of both PA14 and clinical isolates of P. aeruginosa to polymyxin B and kanamycin when used in combination. Moreover, Harmine down-regulated a series of QS controlled genes associated with pathogenicity and the underlying mechanism may have involved competitively antagonizing autoinducers' receptors LasR, RhlR, and PqsR.
CONCLUSIONS: This study shed light on the anti-virulence potential of Harmine against QS targets, suggesting the possible use of Harmine and its derivates as anti-virulence compounds.

Keywords

References

  1. Biosci Rep. 2019 Apr 12;39(4): [PMID: 30910848]
  2. J Bacteriol. 2017 Oct 3;199(21): [PMID: 28808129]
  3. Antioxid Redox Signal. 2021 Feb 20;34(6):442-451 [PMID: 32370551]
  4. Comput Biol Med. 2024 Feb;169:107927 [PMID: 38184864]
  5. Molecules. 2020 Oct 29;25(21): [PMID: 33138250]
  6. Mol Microbiol. 2021 Apr;115(4):643-657 [PMID: 33073409]
  7. Trends Microbiol. 2018 Apr;26(4):313-328 [PMID: 29132819]
  8. mBio. 2020 Apr 7;11(2): [PMID: 32265330]
  9. Trends Microbiol. 2024 Jan 18;: [PMID: 38238231]
  10. Antibiotics (Basel). 2024 Jan 11;13(1): [PMID: 38247630]
  11. Signal Transduct Target Ther. 2022 Jun 25;7(1):199 [PMID: 35752612]
  12. Ann Clin Microbiol Antimicrob. 2022 Aug 29;21(1):38 [PMID: 36038932]
  13. Protein Cell. 2015 Jan;6(1):26-41 [PMID: 25249263]
  14. Acta Pharmacol Sin. 2022 Jan;43(1):50-63 [PMID: 33785860]
  15. Front Cell Infect Microbiol. 2018 Apr 26;8:119 [PMID: 29755959]
  16. Front Cell Infect Microbiol. 2023 Jun 29;13:1159798 [PMID: 37457962]
  17. Anal Bioanal Chem. 2020 Sep;412(24):5897-5912 [PMID: 32462363]
  18. Methods Mol Biol. 2014;1149:73-86 [PMID: 24818899]
  19. Biotechnol Adv. 2019 Jan - Feb;37(1):68-90 [PMID: 30471318]
  20. Nat Commun. 2023 Sep 25;14(1):5976 [PMID: 37749088]
  21. PLoS Biol. 2020 Aug 18;18(8):e3000805 [PMID: 32810152]
  22. Methods Mol Biol. 2014;1149:653-69 [PMID: 24818940]
  23. Nat Rev Microbiol. 2014 Apr;12(4):300-8 [PMID: 24625893]
  24. Semin Immunopathol. 2024 Jan;45(4-6):481-491 [PMID: 38078911]
  25. Biology (Basel). 2022 Sep 13;11(9): [PMID: 36138828]
  26. Pathogens. 2022 Sep 05;11(9): [PMID: 36145447]
  27. Drug Resist Updat. 2019 May;44:100640 [PMID: 31492517]
  28. Front Microbiol. 2022 Jul 26;13:975616 [PMID: 35958138]
  29. Microorganisms. 2020 Mar 17;8(3): [PMID: 32192182]
  30. Arch Pharm Res. 2020 Dec;43(12):1259-1275 [PMID: 33206346]
  31. Appl Microbiol Biotechnol. 2019 Jan;103(2):903-915 [PMID: 30421108]
  32. J Antibiot (Tokyo). 2021 Jan;74(1):24-41 [PMID: 32647212]
  33. EMBO Rep. 2020 Dec 3;21(12):e51034 [PMID: 33400359]
  34. Future Microbiol. 2013 Jul;8(7):901-21 [PMID: 23841636]
  35. Drug Discov Today. 2019 Jan;24(1):350-359 [PMID: 30036575]
  36. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36764832]
  37. J Bacteriol. 2005 Jul;187(14):4875-83 [PMID: 15995202]
  38. Appl Microbiol Biotechnol. 2024 Feb 19;108(1):222 [PMID: 38372782]
  39. Microbiol Res. 2022 Nov;264:127173 [PMID: 36037563]
  40. Beilstein J Org Chem. 2018 Oct 11;14:2607-2617 [PMID: 30410623]
  41. MethodsX. 2021 Oct 11;8:101543 [PMID: 34754811]
  42. Front Cell Infect Microbiol. 2022 Jan 24;11:789672 [PMID: 35141168]
  43. Int J Mol Sci. 2023 Jul 25;24(15): [PMID: 37569271]
  44. Molecules. 2020 Aug 15;25(16): [PMID: 32824118]
  45. Crit Rev Microbiol. 2023 Nov 24;:1-16 [PMID: 37999716]
  46. BMC Microbiol. 2023 Mar 30;23(1):86 [PMID: 36991325]
  47. J Bacteriol. 2003 Apr;185(7):2066-79 [PMID: 12644476]
  48. J Microsc Ultrastruct. 2018 Jan-Mar;6(1):1-10 [PMID: 30023261]
  49. Nucleic Acids Res. 2015 Jul 1;43(W1):W443-7 [PMID: 25873628]
  50. Front Microbiol. 2022 Aug 15;13:978502 [PMID: 36046018]

Grants

  1. 32200525/The National Natural Science Foundation of China
  2. ARRLKF21-06/Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province

MeSH Term

Quorum Sensing
Pseudomonas aeruginosa
Animals
Harmine
Caenorhabditis elegans
Mice
Virulence
Anti-Bacterial Agents
Biofilms
Pseudomonas Infections
Molecular Docking Simulation
Microbial Sensitivity Tests
Pyocyanine
Disease Models, Animal
Drug Resistance, Bacterial
Female

Chemicals

Harmine
Anti-Bacterial Agents
Pyocyanine

Word Cloud

Created with Highcharts 10.0.0HarmineaeruginosaQSeffectinfectionPAMRsensinganti-virulencePseudomonasPA14elegansresistanceQuorumpathogenicitytargetsscreeningreceptorsexploredpyocyaninproductionexocellularproteaseexcretionbiofilmformationtwitchingmotilityprotectiveCmicemodelsmechanismHarmine'sinhibitoryanalysisresultsBACKGROUND:antimicrobialbecomeglobalhealthcrisisnewstrategiesurgentlyneededresponsiblebacterialcommunicationamongdrugsthriveonepromisingtreatmentsMETHODS:identifiednaturalcompoundvirtualbasedthreeQS-controlledpathogenicity-relatedphenotypesincludingCaenorhabditisdeterminedsynergisticcombinedcommonantibioticsunderlayingillustratedmoleculardockingtranscriptomictargetverificationassayRESULTS:vitrosuggestedpossessedeffectsvivodisplayedIntriguinglyincreasedsusceptibilityclinicalisolatespolymyxinBkanamycinusedcombinationMoreoverdown-regulatedseriescontrolledgenesassociatedunderlyingmayinvolvedcompetitivelyantagonizingautoinducers'LasRRhlRPqsRCONCLUSIONS:studyshedlightpotentialsuggestingpossibleusederivatescompoundsactsquoruminhibitordecreasingvirulenceantibioticinhibitorsVirtual

Similar Articles

Cited By

No available data.