Vaccinia virus F1L blocks the ribotoxic stress response to subvert ZAKα-dependent NLRP1 inflammasome activation.

Inga Szymanska, Stefan Bauernfried, Tobias Komar, Veit Hornung
Author Information
  1. Inga Szymanska: Gene Center and Department of Biochemistry, LMU München, Munich, Germany.
  2. Stefan Bauernfried: Gene Center and Department of Biochemistry, LMU München, Munich, Germany.
  3. Tobias Komar: Gene Center and Department of Biochemistry, LMU München, Munich, Germany.
  4. Veit Hornung: Gene Center and Department of Biochemistry, LMU München, Munich, Germany. ORCID

Abstract

Inflammasomes are essential for host defense, recognizing foreign or stress signals to trigger immune responses, including maturation of IL-1 family cytokines and pyroptosis. Here, NLRP1 is emerging as an important sensor of viral infection in barrier tissues. NLRP1 is activated by various stimuli, including viral double-stranded (ds) RNA, ribotoxic stress, and inhibition of dipeptidyl peptidases 8 and 9 (DPP8/9). However, certain viruses, most notably the vaccinia virus, have evolved strategies to subvert inflammasome activation or effector functions. Using the modified vaccinia virus Ankara (MVA) as a model, we investigated how the vaccinia virus inhibits inflammasome activation. We confirmed that the early gene F1L plays a critical role in inhibiting NLRP1 inflammasome activation. Interestingly, it blocks dsRNA and ribotoxic stress-dependent NLRP1 activation without affecting its DPP9-inhibition-mediated activation. Complementation and loss-of-function experiments demonstrated the sufficiency and necessity of F1L in blocking NLRP1 activation. Furthermore, we found that F1L-deficient, but not wild-type MVA, induced ZAKα activation. Indeed, an F1L-deficient virus was found to disrupt protein translation more prominently than an unmodified virus, suggesting that F1L acts in part upstream of ZAKα. These findings underscore the inhibitory role of F1L on NLRP1 inflammasome activation and provide insight into viral evasion of host defenses and the intricate mechanisms of inflammasome activation.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2300204120 [PMID: 37364111]
  2. Pathogens. 2020 May 21;9(5): [PMID: 32455727]
  3. PLoS Pathog. 2013 Feb;9(2):e1003183 [PMID: 23468625]
  4. Cell. 1992 Oct 2;71(1):153-67 [PMID: 1394428]
  5. Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2213777120 [PMID: 36693106]
  6. Viruses. 2018 Jan 04;10(1): [PMID: 29300297]
  7. Nat Commun. 2024 Jan 26;15(1):786 [PMID: 38278864]
  8. Cell. 2016 Sep 22;167(1):187-202.e17 [PMID: 27662089]
  9. J Biol Chem. 2010 Feb 19;285(8):5569-80 [PMID: 20022954]
  10. Science. 2022 Jul 15;377(6603):328-335 [PMID: 35857590]
  11. J Biol Chem. 2018 Dec 7;293(49):18864-18878 [PMID: 30291141]
  12. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7808-13 [PMID: 23603272]
  13. Science. 2020 Dec 4;370(6521): [PMID: 33093214]
  14. Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2309579121 [PMID: 38175865]
  15. J Biol Chem. 2016 Jul 8;291(28):14600-8 [PMID: 27151220]
  16. J Virol. 2005 Nov;79(22):14031-43 [PMID: 16254338]
  17. Science. 2021 Jan 29;371(6528): [PMID: 33243852]
  18. J Virol. 2005 Jan;79(2):1084-98 [PMID: 15613337]
  19. Nat Med. 2018 Aug;24(8):1151-1156 [PMID: 29967349]
  20. J Cell Sci. 2018 May 31;131(10): [PMID: 29700204]
  21. J Gen Virol. 1997 Mar;78 ( Pt 3):677-85 [PMID: 9049422]
  22. Mol Cell Biol. 2000 Feb;20(4):1436-47 [PMID: 10648628]
  23. Cell Host Microbe. 2018 Feb 14;23(2):254-265.e7 [PMID: 29447697]
  24. Cell Death Differ. 2008 Oct;15(10):1564-71 [PMID: 18551131]
  25. J Gen Virol. 2013 Nov;94(Pt 11):2367-2392 [PMID: 23999164]
  26. J Exp Med. 2023 Jan 2;220(1): [PMID: 36315050]
  27. Methods Mol Biol. 2013;1040:103-15 [PMID: 23852600]
  28. Cell. 2020 Jul 23;182(2):404-416.e14 [PMID: 32610081]
  29. Nat Rev Immunol. 2016 Jul;16(7):407-20 [PMID: 27291964]
  30. J Exp Med. 2023 Oct 2;220(10): [PMID: 37642997]

Grants

  1. 101018672/European Research Council
  2. /Fondation Bettencourt Schueller
  3. CRC 1403/A03 (project-ID 414786233)/Deutsche Forschungsgemeinschaft
  4. ERC-2020-ADG-101018672 ENGINES/ERC

MeSH Term

Vaccinia virus
Inflammasomes
Adaptor Proteins, Signal Transducing
Humans
NLR Proteins
Apoptosis Regulatory Proteins
HEK293 Cells
Viral Proteins
Vaccinia
Animals
Mice
Immune Evasion

Chemicals

Inflammasomes
Adaptor Proteins, Signal Transducing
NLR Proteins
NLRP1 protein, human
Apoptosis Regulatory Proteins
Viral Proteins

Word Cloud

Created with Highcharts 10.0.0activationNLRP1virusinflammasomeF1LstressvacciniaviralribotoxichostincludingsubvertAnkaraMVArolefoundF1L-deficientZAKαVacciniaresponseInflammasomesessentialdefenserecognizingforeignsignalstriggerimmuneresponsesmaturationIL-1familycytokinespyroptosisemergingimportantsensorinfectionbarriertissuesactivatedvariousstimulidouble-strandeddsRNAinhibitiondipeptidylpeptidases89DPP8/9HowevercertainvirusesnotablyevolvedstrategieseffectorfunctionsUsingmodifiedmodelinvestigatedinhibitsconfirmedearlygeneplayscriticalinhibitingInterestinglyblocksdsRNAstress-dependentwithoutaffectingDPP9-inhibition-mediatedComplementationloss-of-functionexperimentsdemonstratedsufficiencynecessityblockingFurthermorewild-typeinducedIndeeddisruptproteintranslationprominentlyunmodifiedsuggestingactspartupstreamfindingsunderscoreinhibitoryprovideinsightevasiondefensesintricatemechanismsF1L blocksZAKα-dependentInflammasomeModifiedRibotoxicVirus

Similar Articles

Cited By