Studying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time-consuming and costly nature of laboratory-based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe-disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe-disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine-tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five-fold cross-validation (5-fold-CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5-fold-CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe-disease associations.
Front Microbiol. 2023 Sep 18;14:1244527
[PMID:
37789848]
Phys Rev E. 2023 Dec;108(6-1):064412
[PMID:
38243441]
Brief Bioinform. 2022 Nov 19;23(6):
[PMID:
36305458]
J Community Hosp Intern Med Perspect. 2016 Feb 17;6(1):30151
[PMID:
26908381]
Front Med (Lausanne). 2021 Aug 17;8:671018
[PMID:
34485325]
Gut Microbes. 2015;6(3):173-81
[PMID:
25915459]
Brief Bioinform. 2023 Jul 20;24(4):
[PMID:
37406190]
PLoS One. 2019 Feb 28;14(2):e0210854
[PMID:
30818368]
Genome Med. 2016 Apr 21;8(1):43
[PMID:
27102666]
J Cell Mol Med. 2024 Apr;28(8):e18292
[PMID:
38652116]
Front Microbiol. 2021 Feb 19;12:634511
[PMID:
33737920]
Anaerobe. 2020 Feb;61:102113
[PMID:
31698044]
Brief Bioinform. 2024 Mar 27;25(3):
[PMID:
38555479]
Appl Microbiol Biotechnol. 2020 Sep;104(18):7777-7785
[PMID:
32780290]
Comput Biol Med. 2024 Mar;171:108177
[PMID:
38422957]
Cell Res. 2020 Jun;30(6):492-506
[PMID:
32433595]
Nat Rev Gastroenterol Hepatol. 2011 Aug 16;8(9):523-31
[PMID:
21844910]
PLoS Comput Biol. 2017 Feb 2;13(2):e1005366
[PMID:
28152007]
Microb Ecol. 2024 Apr 8;87(1):56
[PMID:
38587642]
Protein Cell. 2021 Nov;12(11):858-876
[PMID:
33389663]
Nat Rev Genet. 2011 Jan;12(1):56-68
[PMID:
21164525]
Brief Bioinform. 2023 Jan 19;24(1):
[PMID:
36418927]
Brief Bioinform. 2023 Jan 19;24(1):
[PMID:
36515153]
Nat Rev Immunol. 2021 Sep;21(9):548-569
[PMID:
33833439]
Gut Pathog. 2020 Jan 04;12:1
[PMID:
31911822]
Brief Funct Genomics. 2024 Jul 19;23(4):475-483
[PMID:
38391194]
Brief Bioinform. 2024 Jan 22;25(2):
[PMID:
38446739]
Nat Rev Microbiol. 2017 Oct;15(10):630-638
[PMID:
28626231]
Bioinformatics. 2020 Dec 30;36(Suppl_2):i779-i786
[PMID:
33381844]
Research (Wash D C). 2022 Jul 19;2022:9838341
[PMID:
35958114]
Front Microbiol. 2018 Oct 09;9:2440
[PMID:
30356751]
Bioinformatics. 2024 Jan 2;40(1):
[PMID:
38070161]
Brief Bioinform. 2021 May 20;22(3):
[PMID:
32725163]
FEBS Lett. 2020 Aug;594(16):2570-2585
[PMID:
32594520]
Bioinformatics. 2020 Jul 1;36(13):4038-4046
[PMID:
31793982]
Therap Adv Gastroenterol. 2023 Nov 28;16:17562848231207280
[PMID:
38034098]
J Cell Mol Med. 2024 Apr;28(8):e18255
[PMID:
38526030]
Curr Res Transl Med. 2019 May;67(2):41-50
[PMID:
30685379]
Mol Ther Nucleic Acids. 2023 Dec 18;35(1):102103
[PMID:
38261851]
Brief Bioinform. 2021 May 20;22(3):
[PMID:
32766753]
Front Cell Infect Microbiol. 2020 Nov 24;10:572912
[PMID:
33330122]
Nat Rev Microbiol. 2014 Apr;12(4):252-62
[PMID:
24590244]
Viruses. 2019 Feb 27;11(3):
[PMID:
30818749]
Bioinformatics. 2021 Oct 11;37(19):3328-3336
[PMID:
33822886]
Brief Bioinform. 2022 Sep 20;23(5):
[PMID:
36056743]
Nature. 2016 Jul 06;535(7610):94-103
[PMID:
27383984]
Brief Bioinform. 2017 Jan;18(1):85-97
[PMID:
26883326]
J Cell Mol Med. 2024 Aug;28(15):e18571
[PMID:
39086148]
BMC Biol. 2019 Nov 7;17(1):87
[PMID:
31699101]
Brief Bioinform. 2021 Jul 20;22(4):
[PMID:
33078832]
Animal Model Exp Med. 2022 Dec;5(4):311-322
[PMID:
35808814]
Comput Biol Med. 2023 Oct;165:107414
[PMID:
37660567]
J Cell Mol Med. 2023 Oct;27(20):3117-3126
[PMID:
37525507]
Brief Bioinform. 2023 Nov 22;25(1):
[PMID:
38171927]
Brief Bioinform. 2023 Jul 20;24(4):
[PMID:
37291761]
Health Inf Sci Syst. 2024 Jan 23;12(1):8
[PMID:
38274493]
IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1595-1604
[PMID:
30932846]
Brief Bioinform. 2022 Jan 17;23(1):
[PMID:
34471921]
Mol Ther Nucleic Acids. 2024 Apr 06;35(2):102187
[PMID:
38706631]
Comput Biol Med. 2024 Mar;171:108104
[PMID:
38335821]
Radiology. 1982 Apr;143(1):29-36
[PMID:
7063747]
Methods. 2024 Jan;221:18-26
[PMID:
38040204]
Analyst. 2019 Jan 14;144(2):396-411
[PMID:
30468217]
Bioinformatics. 2017 Mar 1;33(5):733-739
[PMID:
28025197]
Folia Microbiol (Praha). 2020 Apr;65(2):245-264
[PMID:
31773556]
Nat Rev Microbiol. 2007 May;5(5):384-92
[PMID:
17435792]
Pathogens. 2022 Apr 21;11(5):
[PMID:
35631018]
Brief Bioinform. 2021 Nov 5;22(6):
[PMID:
34378011]
Front Microbiol. 2017 Feb 22;8:233
[PMID:
28275370]
Sci Rep. 2017 Aug 8;7(1):7601
[PMID:
28790448]
Biomed Pharmacother. 2023 Jan;157:114046
[PMID:
36469967]
Life (Basel). 2021 Sep 14;11(9):
[PMID:
34575111]
Immunol Rev. 2013 Jul;254(1):78-101
[PMID:
23772616]
Front Microbiol. 2023 Nov 16;14:1287271
[PMID:
38033588]
Front Med (Lausanne). 2022 Jul 08;9:921675
[PMID:
35872763]
APMIS. 2022 Dec;130(12):706-718
[PMID:
34919288]
Brief Bioinform. 2022 Nov 19;23(6):
[PMID:
36411674]
Microorganisms. 2021 May 16;9(5):
[PMID:
34065638]
Brief Bioinform. 2007 Sep;8(5):333-46
[PMID:
17638813]
J Cell Mol Med. 2024 May;28(9):e18358
[PMID:
38693868]
Physiol Rev. 2018 Apr 1;98(2):781-811
[PMID:
29488821]
Brief Bioinform. 2023 Nov 22;25(1):
[PMID:
38113076]
J Arthroplasty. 2019 May;34(5):954-958
[PMID:
30733073]
J Transl Med. 2017 Oct 16;15(1):209
[PMID:
29037244]
Life Sci. 2023 Jul 1;324:121699
[PMID:
37061125]
Nat Rev Gastroenterol Hepatol. 2020 May;17(5):279-297
[PMID:
32152478]
Research (Wash D C). 2024 May 10;7:0361
[PMID:
38737196]
Interdiscip Sci. 2021 Sep;13(3):535-545
[PMID:
34232474]
Life (Basel). 2022 Mar 19;12(3):
[PMID:
35330207]
Front Microbiol. 2024 Feb 20;15:1370818
[PMID:
38444801]
Br Dent J. 2018 Mar 23;224(6):447-455
[PMID:
29569607]
Curr Opin Biotechnol. 2017 Apr;44:94-102
[PMID:
27998788]