Sperm performance in the race for fertilization, the influence of female reproductive fluid.

Livia Pinzoni, Maria Berica Rasotto, Clelia Gasparini
Author Information
  1. Livia Pinzoni: Department of Biology, University of Padova, Padova 35131, Italy. ORCID
  2. Maria Berica Rasotto: Department of Biology, University of Padova, Padova 35131, Italy. ORCID
  3. Clelia Gasparini: Department of Biology, University of Padova, Padova 35131, Italy. ORCID

Abstract

In studies of sperm competition, particularly in external fertilizers, the importance of the fertilization environment on the paternity share among rival males often goes overlooked. The female reproductive fluid (FRF), produced and released by females, creates the microenvironment that sperm encounter on their quest for fertilization and can generate paternity biases by affecting key traits in sperm competition. Yet, whether there is a direct link between FRF effects on sperm traits and its effect on competitive fertilization dynamics remains to be explored. Here, using the zebrafish , we compare within-female paternity share among two competing males and predictors of fertilization success (i.e. sperm traits) in the presence/absence of FRF. Our results unequivocally reveal a direct link between the direction and magnitude of the effect of FRF on sperm traits and the change in the competitive fertilization success of each male. This study demonstrates that the FRF directly mediates post-mating female control through its differential effect on sperm performance and that the FRF's effect on sperm quality alone is sufficient to predict the magnitude of the fitness effects. These findings highlight the need to consider the role of FRF in fertilization, avoiding biases resulting from an exclusive focus on male intrinsic sperm quality.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.7354881

References

  1. Biotechniques. 2007 Nov;43(5):610, 612, 614 [PMID: 18072590]
  2. Proc Biol Sci. 2023 May 31;290(1999):20230574 [PMID: 37221848]
  3. PLoS One. 2010 Aug 13;5(8):e12146 [PMID: 20730092]
  4. Biol Rev Camb Philos Soc. 2008 Feb;83(1):13-34 [PMID: 18093234]
  5. Biol Lett. 2016 Nov;12(11): [PMID: 27807252]
  6. PLoS One. 2013 May 14;8(5):e64431 [PMID: 23691216]
  7. Trends Ecol Evol. 2017 May;32(5):368-382 [PMID: 28318651]
  8. Biol Lett. 2023 Jun;19(6):20230063 [PMID: 37340806]
  9. J Evol Biol. 2009 Jan;22(1):225-9 [PMID: 19120822]
  10. J Exp Biol. 2006 Nov;209(Pt 21):4230-7 [PMID: 17050838]
  11. Reproduction. 2001 Mar;121(3):339-46 [PMID: 11226059]
  12. Proc Biol Sci. 2011 Aug 22;278(1717):2495-501 [PMID: 21227973]
  13. Zebrafish. 2007 Spring;4(1):21-40 [PMID: 18041940]
  14. Trends Ecol Evol. 2005 Jan;20(1):46-53 [PMID: 16701340]
  15. Philos Trans R Soc Lond B Biol Sci. 2020 Dec 7;375(1813):20200077 [PMID: 33070736]
  16. Proc Biol Sci. 2014 Apr 16;281(1784):20140148 [PMID: 24741014]
  17. Biol Bull. 2013 Aug;224(3):166-83 [PMID: 23995741]
  18. Biol Rev Camb Philos Soc. 2020 Apr;95(2):365-392 [PMID: 31737992]
  19. Reproduction. 2012 Nov;144(5):519-34 [PMID: 22984191]
  20. Evolution. 2010 Jun;64(6):1634-43 [PMID: 20015235]
  21. Proc Biol Sci. 2016 Mar 30;283(1827):20160001 [PMID: 27009221]
  22. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1128-32 [PMID: 19164576]
  23. Cells. 2021 Sep 18;10(9): [PMID: 34572122]
  24. Cold Spring Harb Perspect Biol. 2014 Aug 21;6(10):a017509 [PMID: 25147177]
  25. J Insect Physiol. 2002 Feb;48(2):197-203 [PMID: 12770119]
  26. Proc Biol Sci. 2020 Jun 10;287(1928):20200805 [PMID: 32517615]
  27. Curr Biol. 2004 Jan 6;14(1):44-7 [PMID: 14711413]
  28. Mol Ecol. 2007 Mar;16(5):1099-106 [PMID: 17305863]
  29. Am Nat. 2023 Mar;201(3):491-499 [PMID: 36848512]
  30. J Evol Biol. 2017 Jun;30(6):1236-1245 [PMID: 28387056]
  31. Theriogenology. 2020 Jun;149:62-71 [PMID: 32247214]
  32. Proc Biol Sci. 2013 Dec 7;280(1772):20132047 [PMID: 24266039]
  33. Nat Commun. 2016 Aug 16;7:12452 [PMID: 27529581]
  34. Biol Rev Camb Philos Soc. 2010 Nov;85(4):897-934 [PMID: 20560928]
  35. Mol Mar Biol Biotechnol. 1997 Jun;6(2):84-7 [PMID: 9200834]

Word Cloud

Created with Highcharts 10.0.0spermfertilizationFRFfemalefluidtraitseffectcompetitionpaternityreproductiveperformanceshareamongmalesbiasesdirectlinkeffectscompetitivesuccessmagnitudemalequalitystudiesparticularlyexternalfertilizersimportanceenvironmentrivaloftengoesoverlookedproducedreleasedfemalescreatesmicroenvironmentencounterquestcangenerateaffectingkeyYetwhetherdynamicsremainsexploredusingzebrafishcomparewithin-femaletwocompetingpredictorsiepresence/absenceresultsunequivocallyrevealdirectionchangestudydemonstratesdirectlymediatespost-matingcontroldifferentialFRF'salonesufficientpredictfitnessfindingshighlightneedconsiderroleavoidingresultingexclusivefocusintrinsicSpermraceinfluenceovarian

Similar Articles

Cited By