Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells.

Ziwei Chen, Guoying Hua, Xin Shu, Wuchao Zhuang, Jilong Zhang, Runbang Zhu, Xiaotong Zheng, Jianfei Chen
Author Information
  1. Ziwei Chen: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  2. Guoying Hua: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  3. Xin Shu: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  4. Wuchao Zhuang: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  5. Jilong Zhang: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  6. Runbang Zhu: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  7. Xiaotong Zheng: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
  8. Jianfei Chen: Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China. jfchen@just.edu.cn.

Abstract

The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.

Keywords

References

  1. Poult Sci. 2023 Jan;102(1):102278 [PMID: 36402040]
  2. Front Genet. 2022 Jun 13;13:913886 [PMID: 35770000]
  3. Nucleic Acids Res. 2010 Sep;38(16):5554-68 [PMID: 20430825]
  4. Mol Biol Cell. 2013 Sep;24(17):2597-608 [PMID: 23864712]
  5. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  6. PLoS One. 2017 May 1;12(5):e0176402 [PMID: 28459824]
  7. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  8. Stress. 2019 May;22(3):387-394 [PMID: 30806126]
  9. Anim Genet. 2022 Dec;53(6):881-887 [PMID: 35993244]
  10. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11770-5 [PMID: 22745163]
  11. Mol Cell. 2011 Feb 18;41(4):384-97 [PMID: 21329877]
  12. PLoS One. 2007 Sep 19;2(9):e898 [PMID: 17878933]
  13. Sci Rep. 2021 Apr 7;11(1):7571 [PMID: 33828143]
  14. Gene. 2015 Apr 25;561(1):82-7 [PMID: 25680290]
  15. Mol Biol Rep. 2023 Apr;50(4):3379-3387 [PMID: 36729208]
  16. Microb Biotechnol. 2022 Sep;15(9):2464-2475 [PMID: 35485188]
  17. Nature. 2023 Apr;616(7958):822-827 [PMID: 37076620]
  18. Trends Genet. 2003 Jul;19(7):362-5 [PMID: 12850439]
  19. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  20. Anal Bioanal Chem. 2014 Oct;406(26):6471-83 [PMID: 24858468]
  21. Proc Soc Exp Biol Med. 1968 Jun;128(2):398-401 [PMID: 5663244]
  22. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  23. FASEB J. 2023 Jun;37(6):e22923 [PMID: 37104087]
  24. Environ Toxicol Pharmacol. 2017 Dec;56:186-190 [PMID: 28946009]
  25. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  26. Poult Sci. 2024 Jan;103(1):103200 [PMID: 37939591]
  27. Poult Sci. 2023 Dec;102(12):103169 [PMID: 37918133]
  28. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  29. Thorax. 2002 Sep;57(9):765-70 [PMID: 12200519]
  30. Biochemistry. 1985 Apr 23;24(9):2147-54 [PMID: 3995008]
  31. Vet Med Sci. 2021 Sep;7(5):1890-1898 [PMID: 34015187]
  32. Front Genet. 2022 Sep 13;13:827538 [PMID: 36176302]
  33. Dev Genes Evol. 2012 Nov;222(6):369-76 [PMID: 23099774]
  34. Sci Total Environ. 2024 Feb 20;912:169019 [PMID: 38048993]
  35. Biomed Eng Online. 2017 Aug 18;16(Suppl 1):65 [PMID: 28830520]
  36. Vet Res. 2016 Oct 20;47(1):105 [PMID: 27765062]
  37. Cell Biol Int. 2017 Jun;41(6):691-696 [PMID: 28225172]
  38. Poult Sci. 2023 Jan;102(1):102297 [PMID: 36446267]
  39. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  40. Mol Biol Rep. 2021 Jan;48(1):67-76 [PMID: 33454906]
  41. PLoS One. 2023 Nov 9;18(11):e0294236 [PMID: 37943830]
  42. Poult Sci. 2023 Nov;102(11):103023 [PMID: 37748246]
  43. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  44. Funct Integr Genomics. 2023 Apr 15;23(2):125 [PMID: 37060478]
  45. Animals (Basel). 2022 Jun 13;12(12): [PMID: 35739867]
  46. Genes (Basel). 2020 Mar 30;11(4): [PMID: 32235512]
  47. Poult Sci. 2018 Nov 1;97(11):4048-4056 [PMID: 30184115]
  48. Microbiol Spectr. 2022 Dec 21;10(6):e0165622 [PMID: 36377893]
  49. Mol Biol Rep. 2020 Jan;47(1):45-53 [PMID: 31583571]
  50. J Biotechnol. 1999 Oct 8;75(2-3):291-5 [PMID: 10617337]
  51. Front Physiol. 2021 May 14;12:676864 [PMID: 34054585]
  52. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]

Grants

  1. SJCX24_2575/Postgraduate Research & Practice Innovation Program of Jiangsu Province
  2. 32302725/National Natural Science Foundation of China
  3. BK20220648/Natural Science Foundation of Jiangsu Province

MeSH Term

Animals
Chickens
Liver
Male
Female
Genes, Essential
Reference Standards
Real-Time Polymerase Chain Reaction
Gene Expression Profiling
Cell Line, Tumor
Chick Embryo

Word Cloud

Created with Highcharts 10.0.0genesreferenceliverLMHRT-qPCRstableHKGscellschickenRNA-seqpoultrystudygenecommonlyusingdataidentifiedexpressionnewreliableselectingusedexperimentsidentifyHoweverexpressedmultiplevalidatedoptimaldiverseplaysvitalrolelipidsynthesismetabolismfunctionaleffectivelyessentialscreenincludingfemalesmalesembryoswellLeghornMaleHepatomacelllineTraditionalscreeninginvolveshousekeepingdifferentalgorithmsonesapproachlimitedbestsmallpoolHigh-throughputsequencingtechnologymayoffersolutionlimitationaimedconsistentlyutilizingpublishedSubsequentlystabilitynewlyassessedcomparisonpreviouslyemployedfindingsindicatedhigherdegreesimilarityfemalemaleLSM14ACDC40embryonicSUDS3TRIM33ERAL1ALDH9A1UGGT1C21H1orf174noteworthyexhibitacrosssamplesindicatingpotentialinstabilityconditionsFurthermoreprovedoutperformedcertainspecificsuccessfullyofferingresearcherswiderrangeoptionssituationsScreeningnormalizationtissuesLiverStable

Similar Articles

Cited By