Glioblastoma Neurovascular Progenitor Orchestrates Tumor Cell Type Diversity.

Elisa Fazzari, Daria J Azizad, Kwanha Yu, Weihong Ge, Matthew X Li, Patricia R Nano, Ryan L Kan, Hong A Tum, Christopher Tse, Nicholas A Bayley, Vjola Haka, Dimitri Cadet, Travis Perryman, Jose A Soto, Brittney Wick, David R Raleigh, Elizabeth E Crouch, Kunal S Patel, Linda M Liau, Benjamin Deneen, David A Nathanson, Aparna Bhaduri
Author Information
  1. Elisa Fazzari: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  2. Daria J Azizad: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  3. Kwanha Yu: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
  4. Weihong Ge: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  5. Matthew X Li: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  6. Patricia R Nano: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  7. Ryan L Kan: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  8. Hong A Tum: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
  9. Christopher Tse: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
  10. Nicholas A Bayley: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. ORCID
  11. Vjola Haka: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
  12. Dimitri Cadet: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. ORCID
  13. Travis Perryman: Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  14. Jose A Soto: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  15. Brittney Wick: Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA.
  16. David R Raleigh: Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA.
  17. Elizabeth E Crouch: Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. ORCID
  18. Kunal S Patel: Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA.
  19. Linda M Liau: Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID
  20. Benjamin Deneen: Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
  21. David A Nathanson: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
  22. Aparna Bhaduri: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA. ORCID

Abstract

Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a neurovascular progenitor (NVP). Following validation and molecular characterization of NVP cells in GBM patient samples, we characterized their function Genetic depletion of NVP cells resulted in altered tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a paradigm by which cell type-specific interrogation of tumor populations can be used to study functional heterogeneity and therapeutically targetable vulnerabilities of GBM.

References

  1. Mol Cancer. 2014 Nov 08;13:247 [PMID: 25380967]
  2. Nature. 2019 Sep;573(7775):532-538 [PMID: 31534219]
  3. Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245 [PMID: 29762716]
  4. Front Oncol. 2020 Nov 16;10:566599 [PMID: 33312949]
  5. JAMA. 2017 Dec 19;318(23):2306-2316 [PMID: 29260225]
  6. Curr Neurol Neurosci Rep. 2005 May;5(3):198-206 [PMID: 15865885]
  7. Cell Stem Cell. 2020 Jan 2;26(1):48-63.e6 [PMID: 31901251]
  8. Nature. 2006 Dec 7;444(7120):756-60 [PMID: 17051156]
  9. Nat Commun. 2020 Jul 8;11(1):3406 [PMID: 32641768]
  10. Science. 2015 Jun 26;348(6242):aaa6071 [PMID: 26113728]
  11. Bioinformatics. 2015 Jun 15;31(12):1913-9 [PMID: 25638815]
  12. Sci Rep. 2014 Jun 23;4:5400 [PMID: 24954249]
  13. Cancer Discov. 2024 Oct 4;14(10):1823-1837 [PMID: 38742767]
  14. Nat Rev Clin Oncol. 2018 Jul;15(7):422-442 [PMID: 29643471]
  15. Natl Sci Rev. 2020 Aug;7(8):1306-1318 [PMID: 34692159]
  16. J Cereb Blood Flow Metab. 2006 May;26(5):613-24 [PMID: 16421511]
  17. Clin Sci (Lond). 2015 Jan;128(2):81-93 [PMID: 25236972]
  18. Nat Commun. 2018 Aug 27;9(1):3439 [PMID: 30150753]
  19. Int J Mol Sci. 2021 Feb 12;22(4): [PMID: 33673213]
  20. Nat Cancer. 2021 Feb;2(2):157-173 [PMID: 35122077]
  21. Cancer Med. 2018 Jul;7(7):2848-2859 [PMID: 29777576]
  22. Nature. 2020 Feb;578(7793):142-148 [PMID: 31996853]
  23. Cancer Discov. 2019 Dec;9(12):1708-1719 [PMID: 31554641]
  24. Nat Protoc. 2020 Mar;15(3):750-772 [PMID: 32051617]
  25. Cell. 2024 May 9;187(10):2485-2501.e26 [PMID: 38653236]
  26. Cell. 2019 Feb 7;176(4):743-756.e17 [PMID: 30735633]
  27. iScience. 2018 Nov 30;9:71-83 [PMID: 30384135]
  28. Cell. 2020 Jan 9;180(1):188-204.e22 [PMID: 31883794]
  29. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  30. Cell Rep. 2017 Oct 31;21(5):1399-1410 [PMID: 29091775]
  31. Genes Dev. 2012 Jun 1;26(11):1247-62 [PMID: 22661233]
  32. Neurotherapeutics. 2022 Oct;19(6):1799-1817 [PMID: 36303101]
  33. Cell. 2023 Mar 16;186(6):1179-1194.e15 [PMID: 36931245]
  34. Nat Methods. 2023 Sep;20(9):1323-1335 [PMID: 37550580]
  35. Biochem Biophys Res Commun. 2013 Apr 19;433(4):496-501 [PMID: 23524267]
  36. Nature. 2022 Mar;603(7903):885-892 [PMID: 35165441]
  37. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  38. Cell. 2013 Mar 28;153(1):139-52 [PMID: 23540695]
  39. Nat Biotechnol. 2024 Feb;42(2):293-304 [PMID: 37231261]
  40. Nat Cancer. 2022 Dec;3(12):1534-1552 [PMID: 36539501]
  41. Cell. 2019 Aug 8;178(4):835-849.e21 [PMID: 31327527]
  42. Nature. 2020 Feb;578(7793):166-171 [PMID: 31996845]
  43. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  44. Nature. 2019 Jun;570(7762):523-527 [PMID: 31168097]
  45. Cell. 2022 Sep 29;185(20):3753-3769.e18 [PMID: 36179668]
  46. Nature. 2019 Sep;573(7775):539-545 [PMID: 31534222]
  47. Cancer Cell. 2022 Jun 13;40(6):639-655.e13 [PMID: 35700707]
  48. Neoplasia. 2011 Jun;13(6):492-503 [PMID: 21677873]
  49. Neuro Oncol. 2005 Oct;7(4):452-64 [PMID: 16212810]
  50. J Clin Invest. 2023 Mar 1;133(5): [PMID: 36856115]
  51. Biochim Biophys Acta Mol Basis Dis. 2022 Dec 1;1868(12):166534 [PMID: 36057370]
  52. Nature. 2018 Dec;564(7735):219-224 [PMID: 30518857]
  53. Cell. 2015 Sep 24;163(1):55-67 [PMID: 26406371]
  54. Dev Cell. 2022 Jan 10;57(1):32-46.e8 [PMID: 35016005]
  55. Neuro Oncol. 2022 Dec 1;24(12):2035-2062 [PMID: 36125064]
  56. Nat Protoc. 2018 Apr;13(4):738-751 [PMID: 29565899]
  57. Genes Dev. 2019 Jun 1;33(11-12):591-609 [PMID: 31160393]
  58. Neoplasia. 2014 Mar;16(3):193-206, 206.e19-25 [PMID: 24726753]
  59. Genome Med. 2021 May 11;13(1):82 [PMID: 33975634]
  60. Nature. 2017 Sep 28;549(7673):533-537 [PMID: 28959975]
  61. Stem Cell Reports. 2020 Feb 11;14(2):338-350 [PMID: 32004492]
  62. Cancer Cell. 2020 Sep 14;38(3):366-379.e8 [PMID: 32649888]
  63. Nat Genet. 2021 Oct;53(10):1456-1468 [PMID: 34594038]
  64. Cell Stem Cell. 2012 Oct 5;11(4):471-6 [PMID: 23040476]
  65. Genome Med. 2018 Jul 24;10(1):57 [PMID: 30041684]
  66. Sci Adv. 2022 Jun 10;8(23):eabm6340 [PMID: 35675414]
  67. Nature. 2023 Jul;619(7971):844-850 [PMID: 37380778]
  68. Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31448-31458 [PMID: 33229571]
  69. Nature. 2024 Aug;632(8025):603-613 [PMID: 38987604]
  70. Nat Rev Mol Cell Biol. 2013 Jun;14(6):329-40 [PMID: 23698583]
  71. N Engl J Med. 2005 Mar 10;352(10):987-96 [PMID: 15758009]
  72. Hippocampus. 2004;14(7):861-75 [PMID: 15382256]

Grants

  1. P50 CA211015/NCI NIH HHS
  2. RF1 MH132662/NIMH NIH HHS
  3. T32 GM152342/NIGMS NIH HHS
  4. U24 HG002371/NHGRI NIH HHS

Word Cloud

Created with Highcharts 10.0.0tumorcellcellsGBMNVPheterogeneityfunctionalGlioblastomaprimarystudiesmolecularfeaturescharacterizationrolepopulationstumorsstemvascularpatientcyclingdemonstratedstudydeadliestformbrainlimitedtreatmentoptionsRecentprofiledrevealingnumerousaxesvariationexplainspatialseekbridgedescriptivetypeindividualwithinlensleveragesgeneprogram-centricmeta-atlaspublishedtranscriptomicidentifycommonalitiesdiversetypesorderdeciphermechanismsdriveapproachleddiscoverytumor-derivedpopulationmixedneuraltermedneurovascularprogenitorFollowingvalidationsamplescharacterizedfunctionGeneticdepletionresultedalteredcompositionfewerextendedsurvivalunderscoringcriticalClonalanalysishumanorganoidtransplantationsystemdualpotencygeneratingneuronalAlthoughcomprisesmallfractionclonalanalysesstronglycontributetotalnumbergeneratedefinedsubsetwholerepresentsparadigmtype-specificinterrogationcanusedtherapeuticallytargetablevulnerabilitiesNeurovascularProgenitorOrchestratesTumorCellTypeDiversity

Similar Articles

Cited By