The causal involvement of the visual cortex in visual working memory remains uncertain.

Pablo Rodrigo Grassi, Michael M Bannert, Andreas Bartels
Author Information
  1. Pablo Rodrigo Grassi: Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany. ORCID
  2. Michael M Bannert: Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.
  3. Andreas Bartels: Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.

Abstract

The role of the early visual cortex in visual working memory (VWM) is a matter of current debate. Neuroimaging studies have consistently shown that visual areas encode the content of working memory, while transcranial magnetic stimulation (TMS) studies have presented incongruent results. Thus, we lack conclusive evidence supporting the causal role of early visual areas in VWM. In a recent registered report, Phylactou . (Phylactou P, Shimi A, Konstantinou N 2023 . 10, 230321 (doi:10.1098/rsos.230321)) sought to tackle this controversy via two well-powered TMS experiments, designed to correct possible methodological issues of previous attempts identified in a preceding systematic review and meta-analysis (Phylactou P, Traikapi A, Papadatou-Pastou M, Konstantinou N 2022 29, 1594-1624 (doi:10.3758/s13423-022-02107-y)). However, a key part of their critique and experimental design was based on a misunderstanding of the visual system. They disregarded two important anatomical facts, namely that early visual areas of each hemisphere represent the contralateral visual hemifield, and that each hemisphere receives equally strong input from each eye-both leading to confounded conditions and artefactual effects in their studies. Here, we explain the correct anatomy, describe why their experiments failed to address current issues in the literature and perform a thorough reanalysis of their TMS data revealing important null results. We conclude that the causal role of the visual cortex in VWM remains uncertain.

Keywords

References

  1. J Neurosci. 2007 Sep 26;27(39):10391-403 [PMID: 17898211]
  2. Neuron. 2007 Jul 19;55(2):301-12 [PMID: 17640530]
  3. J Neurosci. 2014 Jan 1;34(1):158-62 [PMID: 24381277]
  4. Neuropsychologia. 2015 Aug;75:143-8 [PMID: 26026256]
  5. J Neurosci. 2021 May 19;41(20):4476-4486 [PMID: 33811151]
  6. Commun Biol. 2021 Sep 14;4(1):1069 [PMID: 34521987]
  7. Cereb Cortex. 2022 Mar 30;32(7):1470-1479 [PMID: 34476462]
  8. Neuroimage. 2017 Sep;158:308-318 [PMID: 28711735]
  9. Neuroscientist. 2009 Feb;15(1):62-77 [PMID: 19218231]
  10. Trends Cogn Sci. 2017 Oct;21(10):794-815 [PMID: 28774684]
  11. J Neurosci. 2009 Dec 2;29(48):15258-65 [PMID: 19955378]
  12. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7): [PMID: 33574061]
  13. Neuron. 2012 Aug 9;75(3):393-401 [PMID: 22884323]
  14. Curr Biol. 2023 Oct 23;33(20):4516-4523.e5 [PMID: 37741281]
  15. J Neurosci. 2012 Jan 4;32(1):4-11 [PMID: 22219265]
  16. Nat Rev Neurosci. 2004 Sep;5(9):729-35 [PMID: 15322531]
  17. Eur J Neurosci. 2009 Oct;30(7):1393-400 [PMID: 19788574]
  18. Annu Rev Vis Sci. 2021 Sep 15;7:155-179 [PMID: 33979527]
  19. Neuroimage. 2013 May 15;72:243-51 [PMID: 23384521]
  20. R Soc Open Sci. 2023 Apr 19;10(4):230321 [PMID: 37090966]
  21. J Vis. 2014 Mar 19;14(3):22 [PMID: 24648192]
  22. Brain Topogr. 2005 Summer;17(4):193-6 [PMID: 16110769]
  23. Curr Biol. 2018 Nov 5;28(21):3435-3440.e4 [PMID: 30344121]
  24. Trends Cogn Sci. 2017 Feb;21(2):111-124 [PMID: 28063661]
  25. Psychon Bull Rev. 2022 Oct;29(5):1594-1624 [PMID: 35606595]
  26. J Vis Exp. 2010 Nov 10;(45): [PMID: 21113111]
  27. Psychol Sci. 2009 Feb;20(2):207-14 [PMID: 19170936]
  28. Nat Hum Behav. 2022 Jan;6(1):29-42 [PMID: 34782730]
  29. PLoS One. 2013;8(3):e57765 [PMID: 23469232]
  30. Cereb Cortex. 2010 Feb;20(2):328-38 [PMID: 19465739]
  31. Trends Cogn Sci. 2006 Nov;10(11):502-11 [PMID: 16997612]
  32. Eur J Radiol. 2004 Jan;49(1):8-30 [PMID: 14982083]
  33. Nat Commun. 2017 Jan 05;8:13804 [PMID: 28054544]
  34. J Neurosci. 2009 Jul 15;29(28):9050-8 [PMID: 19605642]
  35. Curr Biol. 2014 Sep 22;24(18):2174-2180 [PMID: 25201683]
  36. Neuron. 1998 Dec;21(6):1409-22 [PMID: 9883733]
  37. Brain Cogn. 2010 Apr;72(3):368-77 [PMID: 19962813]
  38. PLoS One. 2017 Apr 6;12(4):e0175230 [PMID: 28384347]
  39. Sci Data. 2021 Nov 26;8(1):308 [PMID: 34836950]
  40. J Cogn Neurosci. 2017 Jul;29(7):1226-1238 [PMID: 28253081]
  41. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]

Word Cloud

Created with Highcharts 10.0.0visualcortexworkingmemoryTMSroleearlyVWMstudiesareascausalPhylactoucurrenttranscranialmagneticstimulationresultsPKonstantinouN230321doi:10twoexperimentscorrectissuesimportanthemisphereremainsuncertainmatterdebateNeuroimagingconsistentlyshownencodecontentpresentedincongruentThuslackconclusiveevidencesupportingrecentregisteredreportShimi2023101098/rsossoughttacklecontroversyviawell-powereddesignedpossiblemethodologicalpreviousattemptsidentifiedprecedingsystematicreviewmeta-analysisTraikapiPapadatou-PastouM2022291594-16243758/s13423-022-02107-yHoweverkeypartcritiqueexperimentaldesignbasedmisunderstandingsystemdisregardedanatomicalfactsnamelyrepresentcontralateralhemifieldreceivesequallystronginputeye-bothleadingconfoundedconditionsartefactualeffectsexplainanatomydescribefailedaddressliteratureperformthoroughreanalysisdatarevealingnullconcludeinvolvementsensoryrecruitment

Similar Articles

Cited By