The N-region sequence context impacts the chloroplast import efficiency of multi-TMD protein.

Namitha Nayak, Rajesh Mehrotra, Sandhya Mehrotra
Author Information
  1. Namitha Nayak: Department of Biological Sciences, Birla Institute of Science and Technology- K. K. Birla Goa Campus, Sancoale, Goa, India.
  2. Rajesh Mehrotra: Department of Biological Sciences, Birla Institute of Science and Technology- K. K. Birla Goa Campus, Sancoale, Goa, India.
  3. Sandhya Mehrotra: Department of Biological Sciences, Birla Institute of Science and Technology- K. K. Birla Goa Campus, Sancoale, Goa, India. sandhyam@goa.bits-pilani.ac.in. ORCID

Abstract

Targeting heterologous multi-transmembrane domain (TMD) proteins to plant chloroplasts requires sequences in addition to the chloroplast transit peptide (cTP). The N-terminal domain (N-region), located C-terminal to the cTP in chloroplast inner envelope membrane proteins, is an essential region for import. However, it was unclear if the N-region functions solely as a spacer sequence to facilitate cTP access or if it plays an active role in the import process. This study addresses the N-region's role by using combinations of cTPs and N-regions from Arabidopsis chloroplast inner envelope membrane proteins to direct the cyanobacterial protein SbtA to the chloroplast. We find that the sequence context of the N-region affects the chloroplast import efficiency of SbtA, with particular sequences mis-targeting the protein to different cellular sub-compartments. Additionally, specific cTP and N-region pairs exhibit varying targeting efficiencies for different heterologous proteins. Substituting individual N-region motifs did not significantly alter the chloroplast targeting efficiency of a particular cTP and N-region pair. We conclude that the N-region exhibits contextual functioning and potentially functional redundancy in motifs.

Keywords

References

  1. Anderson A, Singhal S, Fernandez DE (2019) Membrane-specific targeting of tail-anchored proteins SECE1 and SECE2 within chloroplasts. Front Plant Sci 10:1401 [DOI: 10.3389/fpls.2019.01401]
  2. Bionda T, Tillmann B, Simm S, Beilstein K, Ruprecht M, Schleiff E (2010) Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J Mol Biol 402:510���523 [DOI: 10.1016/j.jmb.2010.07.052]
  3. Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta Biomembr 1808:937���946 [DOI: 10.1016/j.bbamem.2010.07.010]
  4. Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10:440���447 [DOI: 10.1016/S0962-8924(00)01833-X]
  5. Bruce BD (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. BBA 1541:2���21 [PMID: 11750659]
  6. Caspari OD (2022) Transit peptides often require downstream unstructured sequence for efficient chloroplast import in Chlamydomonas reinhardtii. Front Plant Sci 13:825797 [DOI: 10.3389/fpls.2022.825797]
  7. Day PM, Inoue K, Theg SM (2019) Chloroplast outer envelope barrel proteins use components of the general import apparatus. Plant Cell 31:1845���1855 [DOI: 10.1105/tpc.19.00001]
  8. Engel AJ, Paech S, Langhans M, van Etten JL, Moroni A, Thiel G, Rauh O (2023) Combination of hydrophobicity and codon usage bias determines sorting of model K+ channel protein to either mitochondria or endoplasmic reticulum. Traffic 24:533���545 [DOI: 10.1111/tra.12915]
  9. Froehlich JE, Keegstra K (2011) The role of the transmembrane domain in determining the targeting of membrane proteins to either the inner envelope or thylakoid membrane. The Plant J Cell Mol Biol 68:844���856 [DOI: 10.1111/j.1365-313X.2011.04735.x]
  10. Gao LL, Hong ZH, Wang Y, Wu GZ (2023) Chloroplast proteostasis: a story of birth, life, and death. Plant Commun. https://doi.org/10.1016/j.xplc.2022.100424 [DOI: 10.1016/j.xplc.2022.100424]
  11. Inaba T, Schnell DJ (2008) Protein trafficking to plastids: one theme, many variations. Biochem J 413:15���28 [DOI: 10.1042/BJ20080490]
  12. Jarvis P, Soll J (2001) Toc, Tic, and chloroplast protein import. BBA 1541:64���79 [PMID: 11750663]
  13. Kavanagh TA, Jefferson RA, Bevan MW (1988) Targeting a foreign protein to chloroplasts using fusion to the transit peptide of a chlorophyll a/b protein. Mol Genet and Genom 215:38���45 [DOI: 10.1007/BF00331300]
  14. Kim E-H, Suh SC, Park BS, Shin KS, Kweon SJ, Han EJ, Park S-H, Kim YS, Kim J-K (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230:397���405 [DOI: 10.1007/s00425-009-0955-x]
  15. Kim S, Lee D-S, Choi IS, Ahn S-J, Kim Y-H, Bae H-J (2010) Arabidopsis thaliana RuBisCO small subunit transit peptide increases the accumulation of thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19:489���497 [DOI: 10.1007/s11248-009-9330-8]
  16. Lee DW, Lee S, Lee G-j, Lee KH, Kim S, Cheong G-W, Hwang I (2006) Functional characterization of sequence motifs in the transit peptide of arabidopsis small subunit of RuBisCO. Plant Physiol 140:466���483 [DOI: 10.1104/pp.105.074575]
  17. Lee DW, Woo S, Geem KR, Hwang I (2015) Sequence motifs in transit peptides act as independent functional units and can be transferred to new sequence contexts. Plant Physiol 169:471���184 [DOI: 10.1104/pp.15.00842]
  18. Lee DW, Yoo Y-J, Razzak MA, Hwang I (2018) Prolines in transit peptides are crucial for efficient preprotein translocation into chloroplasts. Plant Physiol 176:663���667 [DOI: 10.1104/pp.17.01553]
  19. Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157���180 [DOI: 10.1146/annurev-arplant-042809-112222]
  20. Li HM, Schnell D, Theg SM (2020) Protein import motors in chloroplasts: on the role of chaperones. Plant Cell 32:536���542 [DOI: 10.1105/tpc.19.00300]
  21. Nakai M (2018) New perspectives on chloroplast protein import. Plant Cell Physiol 59:1111���1119 [DOI: 10.1093/pcp/pcy083]
  22. Okawa K, Inoue H, Adachi F, Nakayama K, Ito-inaba Y, Schnell DJ, Uehara S, Inaba T (2014) Targeting of a polytopic membrane protein to the inner envelope membrane of chloroplasts in vivo involves multiple transmembrane segments. J Exp Bot 65:5257���5265 [DOI: 10.1093/jxb/eru290]
  23. Patzke K, Prananingrum P, Klemens PAW, Trentmann O, Rodrigues CM, Keller I, Fernie AR, Geigenberger P, B��lter B, Lehmann M, Schmitz-Esser S, Pommerrenig B, Haferkamp I, Neuhaus HE (2019) The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiol 179:569���587 [DOI: 10.1104/pp.18.01036]
  24. Rayner JC, Pelham HR (1997) Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J 16:1832���1841 [DOI: 10.1093/emboj/16.8.1832]
  25. Rochaix JD (2022) Chloroplast protein import machinery and quality control. FEBS J 289:6908���6918 [DOI: 10.1111/febs.16464]
  26. Rolland V, Badger MR, Price DP (2016) Redirecting the cyanobacterial bicarbonate transporters BicA and SbtA to the chloroplast envelope: soluble and membrane cargos need different chloroplast targeting signals in plants. Front Plant Sci 7:185 [DOI: 10.3389/fpls.2016.00185]
  27. Rottet S, F��rster B, Hee WY, Rourke LM, Price GD, Long BM (2021) Engineered accumulation of bicarbonate in plant chloroplasts: Known knowns and known unknowns. Front Plant Sci 12:727118 [DOI: 10.3389/fpls.2021.727118]
  28. Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27:12���22 [DOI: 10.3109/09687680903400120]
  29. Shen B, Zhu C, Yao Z, Cui L, Zhang J, Yang C (2017) An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in. Sci Rep 7:1���12
  30. Singhal R, Fernandez DE (2017) Sorting of SEC translocase SCY components to different membranes in chloroplasts. J Exp Bot 68:5029���5043 [DOI: 10.1093/jxb/erx318]
  31. Uehara S, Adachi F, Ito-Naba Y, Inaba T (2016) Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis. Front Plant Sci 7:16 [DOI: 10.3389/fpls.2016.00016]
  32. Uehara S, Sei A, Sada M, Ito-Inaba Y, Inaba T (2020) Installation of authentic BicA and SbtA proteins to the chloroplast envelope membrane is achieved by the proteolytic cleavage of chimeric proteins in arabidopsis. Nat Sci Rep 10:2353
  33. Vd BG, Timko MP, Kausch AP, Cashmore AR, Montagu MV, Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313:358���363 [DOI: 10.1038/313358a0]
  34. Viana AAB, Li M, Schnell DJ (2010) Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. J Biol Chem 285:12948���12960 [DOI: 10.1074/jbc.M110.109744]
  35. Xu X, Ouyang M, Lu D, Zheng C, Zhang L (2021) Protein sorting within chloroplasts. Trends Cell Biol 31:9���16 [DOI: 10.1016/j.tcb.2020.09.011]
  36. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565���1572 [DOI: 10.1038/nprot.2007.199]
  37. Zhong H, Teymouri F, Chapman B, Maqbool SB, Sabzikar R, El-Maghraby Y, Dale B, Sticklen MB (2003) The pea (Pisum sativum L.) rbcS transit peptide directs the Alcaligenes eutrophus polyhydroxybutyrate enzymes into the maize (Zea mays L.) chloroplasts. Plant Sci 165:455���462 [DOI: 10.1016/S0168-9452(03)00061-X]

Grants

  1. EMR/2016/002470/Science and Engineering Research Board, India

MeSH Term

Chloroplasts
Arabidopsis
Chloroplast Proteins
Arabidopsis Proteins
Protein Transport
Protein Sorting Signals
Protein Domains
Amino Acid Sequence
Membrane Proteins

Chemicals

Chloroplast Proteins
chloroplast transit peptides
Arabidopsis Proteins
Protein Sorting Signals
Membrane Proteins

Word Cloud

Created with Highcharts 10.0.0N-regionchloroplastcTPimportproteinsproteinsequenceSbtAefficiencyheterologousdomainsequencespeptideinnerenvelopemembranerolecontextparticulardifferenttargetingmotifsTargetingmulti-transmembraneTMDplantchloroplastsrequiresadditiontransitN-terminallocatedC-terminalessentialregionHoweverunclearfunctionssolelyspacerfacilitateaccessplaysactiveprocessstudyaddressesN-region'susingcombinationscTPsN-regionsArabidopsisdirectcyanobacterialfindaffectsmis-targetingcellularsub-compartmentsAdditionallyspecificpairsexhibitvaryingefficienciesSubstitutingindividualsignificantlyalterpairconcludeexhibitscontextualfunctioningpotentiallyfunctionalredundancyimpactsmulti-TMDChloroplastMulti-TMDProteinTransit

Similar Articles

Cited By

No available data.