A pheromone receptor in cichlid fish mediates attraction to females but inhibits male parental care.

Cheng-Yu Li, Jessica M Bowers, Theresa A Alexander, Kristen A Behrens, Peter Jackson, Cyrus J Amini, Scott A Juntti
Author Information
  1. Cheng-Yu Li: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  2. Jessica M Bowers: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  3. Theresa A Alexander: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  4. Kristen A Behrens: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  5. Peter Jackson: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  6. Cyrus J Amini: Department of Biology, University of Maryland, College Park, MD 20742, USA.
  7. Scott A Juntti: Department of Biology, University of Maryland, College Park, MD 20742, USA. Electronic address: sjuntti@umd.edu.

Abstract

Reproductive behaviors differ across species, but the mechanisms that control variation in mating and parental care systems remain unclear. In many animal species, pheromones guide mating and parental care. However, it is not well understood how vertebrate pheromone signaling evolution can lead to new reproductive behavior strategies. In fishes, prostaglandin F (PGF) drives mating and reproductive pheromone signaling in fertile females, but this pheromonal activity appears restricted to specific lineages, and it remains unknown how a female fertility pheromone is sensed for most fish species. Here, we utilize single-cell transcriptomics and CRISPR gene editing in a cichlid fish model to identify and test the roles of key genes involved in olfactory sensing of reproductive cues. We find that a pheromone receptor, Or113a, detects fertile cichlid females and thereby promotes male attraction and mating behavior, sensing a ligand other than PGF. Furthermore, while cichlid fishes exhibit extensive parental care, for most species, care is provided solely by females. We find that males initiate mouthbrooding parental care if they have disrupted signaling in ciliated sensory neurons due to cnga2b mutation or if or113a is inactivated. Together, these results show that distinct mechanisms of pheromonal signaling drive reproductive behaviors across taxa. Additionally, these findings indicate that a single pheromone receptor has gained a novel role in behavior regulation, driving avoidance of paternal care among haplochromine cichlid fishes. Lastly, a sexually dimorphic, evolutionarily derived parental behavior is controlled by central circuits present in both sexes, while olfactory signals gate this behavior in a sex-specific manner.

Keywords

References

  1. Results Probl Cell Differ. 2009;47:v-xi [PMID: 19655435]
  2. Nature. 2017 Apr 27;544(7651):434-439 [PMID: 28424518]
  3. J Neurosci. 2022 Nov 2;42(44):8308-8327 [PMID: 36163141]
  4. Horm Behav. 2006 May;49(5):610-4 [PMID: 16524575]
  5. J Biol Chem. 2019 Apr 26;294(17):6762-6771 [PMID: 30833327]
  6. Eur J Neurosci. 2004 Dec;20(12):3378-86 [PMID: 15610170]
  7. Int J Evol Biol. 2011;2011:470875 [PMID: 21822482]
  8. BMC Genomics. 2017 May 2;18(1):341 [PMID: 28464822]
  9. Cell. 2015 Jun 4;161(6):1334-44 [PMID: 26046438]
  10. Nat Neurosci. 2005 Dec;8(12):1660-2 [PMID: 16261133]
  11. PLoS One. 2013 Oct 25;8(10):e77647 [PMID: 24204902]
  12. Sci Rep. 2017 Jan 03;7:39921 [PMID: 28045081]
  13. Prostaglandins. 1976 Jul;12(1):113-26 [PMID: 959573]
  14. Science. 2023 Oct 6;382(6666):76-81 [PMID: 37797007]
  15. Front Physiol. 2013 Apr 05;4:72 [PMID: 23576993]
  16. BMC Genomics. 2016 Oct 26;17(1):835 [PMID: 27784286]
  17. Nature. 2023 Mar;615(7953):742-749 [PMID: 36922591]
  18. Nature. 2007 Aug 30;448(7157):1009-14 [PMID: 17676034]
  19. Ann N Y Acad Sci. 1999 Jun 29;877:242-57 [PMID: 10415653]
  20. Nature. 2010 Jan 14;463(7278):227-31 [PMID: 19966787]
  21. Nature. 2018 Apr;556(7701):326-331 [PMID: 29643503]
  22. Zool Sci Contrib N Y Zool Soc. 1949;34(Pt. 3):133-58 [PMID: 18268802]
  23. PLoS One. 2016 Dec 1;11(12):e0167509 [PMID: 27907106]
  24. Sci Rep. 2014 Feb 10;4:4037 [PMID: 24509431]
  25. PLoS One. 2012;7(2):e31236 [PMID: 22347454]
  26. J Neurosci. 2005 May 18;25(20):4889-97 [PMID: 15901770]
  27. Behav Neurosci. 2003 Jun;117(3):455-63 [PMID: 12802874]
  28. Curr Biol. 2017 Aug 7;27(15):R739-R743 [PMID: 28787598]
  29. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  30. Bioinformatics. 2021 Dec 7;37(23):4572-4574 [PMID: 34623391]
  31. Horm Behav. 2020 Nov;126:104870 [PMID: 33002455]
  32. Genetics. 2014 Jun;197(2):591-9 [PMID: 24709635]
  33. Curr Biol. 2016 Apr 4;26(7):943-9 [PMID: 26996507]
  34. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28167-28174 [PMID: 33106426]
  35. Integr Comp Biol. 2023 Aug 23;63(2):407-427 [PMID: 37263784]
  36. J Neurocytol. 2005 Sep;34(3-5):183-208 [PMID: 16841163]
  37. Philos Trans R Soc Lond B Biol Sci. 2019 Jul 22;374(1777):20180242 [PMID: 31154971]
  38. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254 [PMID: 29760103]
  39. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  40. Aquaculture. 2011 Oct 1;319(3-4):342-346 [PMID: 21938082]
  41. Biol Lett. 2005 Dec 22;1(4):411-4 [PMID: 17148220]
  42. Nature. 2007 Mar 29;446(7135):542-6 [PMID: 17392786]
  43. Science. 2014 Aug 15;345(6198):765-70 [PMID: 25124430]
  44. Horm Behav. 2019 Nov;116:104582 [PMID: 31445012]
  45. Chem Senses. 1998 Feb;23(1):39-48 [PMID: 9530968]
  46. Genome Biol. 2019 Mar 22;20(1):63 [PMID: 30902100]
  47. Nat Methods. 2014 Jul;11(7):743-8 [PMID: 24880877]
  48. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  49. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6376-81 [PMID: 11972034]
  50. Neuron. 2022 Aug 3;110(15):2455-2469.e8 [PMID: 35654036]
  51. BMC Genomics. 2016 Oct 18;17(1):808 [PMID: 27756226]
  52. Nature. 2010 Jul 1;466(7302):118-22 [PMID: 20596023]
  53. Proc Biol Sci. 2014 Jan 22;281(1778):20133070 [PMID: 24452030]
  54. Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214418120 [PMID: 36584295]
  55. Nature. 1978 May 18;273(5659):191-5 [PMID: 347308]
  56. Neuron. 1996 Oct;17(4):681-93 [PMID: 8893025]
  57. Annu Rev Cell Dev Biol. 2015;31:721-40 [PMID: 26359778]
  58. Genes Cells. 2020 Jul;25(7):498-509 [PMID: 32323394]
  59. Nature. 2014 May 15;509(7500):325-30 [PMID: 24828191]
  60. Gen Comp Endocrinol. 2012 Jan 15;175(2):290-6 [PMID: 22137910]
  61. Science. 2006 Oct 27;314(5799):657-61 [PMID: 16990513]
  62. Horm Behav. 1976 Mar;7(1):105-38 [PMID: 819345]
  63. Biol Reprod. 1988 Dec;39(5):1039-50 [PMID: 3219377]
  64. Curr Opin Neurobiol. 2016 Jun;38:57-62 [PMID: 26952366]
  65. Neuron. 2014 Feb 19;81(4):847-59 [PMID: 24559675]
  66. Gen Comp Endocrinol. 2018 Oct 1;267:128-136 [PMID: 29940184]
  67. Nat Methods. 2020 Jun;17(6):615-620 [PMID: 32366989]
  68. Nat Biotechnol. 2019 Mar;37(3):224-226 [PMID: 30809026]
  69. Cell. 2005 Nov 18;123(4):669-82 [PMID: 16290037]
  70. Nat Rev Genet. 2018 Nov;19(11):705-717 [PMID: 30111830]
  71. Front Neural Circuits. 2013 Apr 11;7:62 [PMID: 23596397]
  72. Sci Rep. 2017 Jul 17;7(1):5572 [PMID: 28717156]
  73. Nature. 1959 Jan 3;183(4653):55-6 [PMID: 13622694]
  74. Curr Opin Neurobiol. 2020 Feb;60:84-91 [PMID: 31830690]
  75. J Neurosci. 2013 Sep 18;33(38):15235-47 [PMID: 24048853]
  76. J Chem Ecol. 2001 Mar;27(3):443-70 [PMID: 11441438]
  77. Nat Rev Genet. 2004 Apr;5(4):288-98 [PMID: 15131652]
  78. Mol Ecol. 2018 Nov;27(21):4270-4288 [PMID: 29972877]
  79. Horm Behav. 2004 Sep;46(3):284-302 [PMID: 15325229]
  80. Physiol Behav. 2023 Dec 1;272:114378 [PMID: 37858914]
  81. Physiol Rev. 1947 Apr;27(2):240-307 [PMID: 20293798]
  82. Science. 1979 Jan 26;203(4378):372-4 [PMID: 760196]
  83. Science. 2002 Feb 22;295(5559):1493-500 [PMID: 11823606]
  84. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  85. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  86. Cell. 2018 Dec 13;175(7):1827-1841.e17 [PMID: 30550786]
  87. Nat Neurosci. 2016 Jul;19(7):897-904 [PMID: 27239939]
  88. Chem Senses. 2012 Mar;37(3):219-27 [PMID: 22038944]
  89. Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):645-51 [PMID: 11399501]
  90. Sci Rep. 2021 Jul 23;11(1):15138 [PMID: 34302019]

Grants

  1. DP2 MH125812/NIMH NIH HHS
  2. R35 GM142872/NIGMS NIH HHS

MeSH Term

Animals
Female
Male
Cichlids
Sexual Behavior, Animal
Fish Proteins
Receptors, Pheromone
Paternal Behavior

Chemicals

Fish Proteins
Receptors, Pheromone

Word Cloud

Created with Highcharts 10.0.0careparentalpheromonebehaviorreproductivecichlidspeciesmatingsignalingfemalesolfactoryreceptorfishesfishbehaviorsacrossmechanismsPGFfertilepheromonalsensingfindmaleattractionReproductivediffercontrolvariationsystemsremainunclearmanyanimalpheromonesguideHoweverwellunderstoodvertebrateevolutioncanleadnewstrategiesprostaglandinFdrivesactivityappearsrestrictedspecificlineagesremainsunknownfemalefertilitysensedutilizesingle-celltranscriptomicsCRISPRgeneeditingmodelidentifytestroleskeygenesinvolvedcuesOr113adetectstherebypromotesligandFurthermoreexhibitextensiveprovidedsolelymalesinitiatemouthbroodingdisruptedciliatedsensoryneuronsduecnga2bmutationor113ainactivatedTogetherresultsshowdistinctdrivetaxaAdditionallyfindingsindicatesinglegainednovelroleregulationdrivingavoidancepaternalamonghaplochromineLastlysexuallydimorphicevolutionarilyderivedcontrolledcentralcircuitspresentsexessignalsgatesex-specificmannermediatesinhibitsAstatotilapiaburtoniCRISPR-Cas9sensationsnRNA-seq

Similar Articles

Cited By