Characterization of the gastrointestinal microbiome of the Syrian hamster (Mesocricetus auratus) and comparison to data from mice.

Linda F B��swald, Bastian Popper, Dana Matzek, Klaus Neuhaus, Jasmin Wenderlein
Author Information
  1. Linda F B��swald: Core Facility Animal Models, Biomedical Center, Medical Faculty, LMU Munich, Planegg-Martinsried, Germany.
  2. Bastian Popper: Core Facility Animal Models, Biomedical Center, Medical Faculty, LMU Munich, Planegg-Martinsried, Germany.
  3. Dana Matzek: Core Facility Animal Models, Biomedical Center, Medical Faculty, LMU Munich, Planegg-Martinsried, Germany.
  4. Klaus Neuhaus: Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany. ORCID
  5. Jasmin Wenderlein: Chair for Bacteriology and Mycology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, LMU Munich, Oberschlei��heim, Germany. ORCID

Abstract

Syrian hamsters (Mesocricetus���auratus) have been increasingly used as rodent models in recent years, especially for SARS-CoV-2 since the pandemic. However, the physiology of this animal model is not yet well-understood, even less when considering the digestive tract. Generally, the gastrointestinal microbiome influences the immune system, drug metabolism, and vaccination efficacy. However, a detailed understanding of the gastrointestinal microbiome of hamsters is missing. Therefore, we analyzed 10 healthy 11-week-old RjHan:AURA hamsters fed a pelleted standard diet. Their gastrointestinal content was sampled (i.e., forestomach, glandular stomach, ileum, cecum, and colon) and analyzed using 16S rRNA gene amplicon sequencing. Results displayed a distinct difference in the bacterial community before and after the cecum, possibly due to the available nutrients and digestive functions. Next, we compared hamsters with the literature data of young-adult C57BL/6J mice, another important animal model. We sampled the same gastrointestinal regions and analyzed the differences in the microbiome between both rodents. Surprisingly, we found strong differences in their specific gastrointestinal bacterial communities. For instance, Lactobacillaceae were more abundant in hamsters' forestomach and ileum, while Muribaculaceae dominated in the mouse forestomach and ileum. Similarly, in mouse cecum and colon, Muribaculaceae were dominant, while in hamsters, Lachnospiraceae and Erysipelotrichaceae dominated the bacterial community. Molecular strains of Muribaculaceae in both rodent species displayed some species specificity. This comparison allows a better understanding of the suitability of the Syrian hamster as an animal model, especially regarding its comparability to other rodent models. Thereby, this work contributes to the characterization of the hamster model and allows better experimental planning.

Keywords

References

  1. Sci Rep. 2023 Oct 12;13(1):17299 [PMID: 37828078]
  2. Mucosal Immunol. 2011 Mar;4(2):148-57 [PMID: 21228770]
  3. Dis Model Mech. 2015 Jan;8(1):1-16 [PMID: 25561744]
  4. ILAR J. 2002;43(2):66-79 [PMID: 11917158]
  5. J Morphol. 2022 Sep;283(9):1200-1209 [PMID: 35830587]
  6. Nat Rev Microbiol. 2005 May;3(5):431-8 [PMID: 15821725]
  7. Appl Environ Microbiol. 1997 Jul;63(7):2802-13 [PMID: 9212428]
  8. Front Immunol. 2019 Oct 01;10:2329 [PMID: 31632404]
  9. Ecology. 2007 Oct;88(10):2427-39 [PMID: 18027744]
  10. Microbiome. 2019 Feb 19;7(1):28 [PMID: 30782206]
  11. Antibiotics (Basel). 2021 Feb 11;10(2): [PMID: 33670214]
  12. Br J Nutr. 1987 Jul;58(1):149-58 [PMID: 3040075]
  13. J Nutr. 1978 Jul;108(7):1047-53 [PMID: 660297]
  14. Int J Syst Evol Microbiol. 2017 May;67(5):1613-1617 [PMID: 28005526]
  15. J Anim Sci. 1969;28(3):349-52 [PMID: 5813048]
  16. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  17. Int J Mol Sci. 2021 Jun 18;22(12): [PMID: 34207032]
  18. Int J Mol Sci. 2023 Jan 06;24(2): [PMID: 36674613]
  19. STAR Protoc. 2020 Oct 26;1(3):100148 [PMID: 33377042]
  20. Sci Rep. 2016 Sep 23;6:33721 [PMID: 27659943]
  21. Cell Host Microbe. 2023 Jul 12;31(7):1111-1125.e6 [PMID: 37339626]
  22. Front Microbiol. 2012 Sep 26;3:340 [PMID: 23055996]
  23. J Pharm Pharmacol. 2008 Jan;60(1):63-70 [PMID: 18088506]
  24. Cell Rep. 2020 Mar 3;30(9):2909-2922.e6 [PMID: 32130896]
  25. J Immunol. 2004 Mar 1;172(5):2731-8 [PMID: 14978070]
  26. Nat Microbiol. 2016 Aug 08;1(10):16131 [PMID: 27670113]
  27. Animals (Basel). 2022 Apr 07;12(8): [PMID: 35454201]
  28. Zentralbl Veterinarmed A. 1974 Jul;21(7):553-61 [PMID: 4213391]
  29. Nature. 2014 Mar 27;507(7493):423-5 [PMID: 24678540]
  30. Int J Med Microbiol. 2021 Apr;311(3):151485 [PMID: 33689954]
  31. Nucleic Acids Res. 2007;35(21):7188-96 [PMID: 17947321]
  32. Appl Biochem Biotechnol. 2013 Apr;169(7):2088-100 [PMID: 23371780]
  33. Viruses. 2021 May 13;13(5): [PMID: 34068409]
  34. Animals (Basel). 2021 Mar 18;11(3): [PMID: 33803597]
  35. J Immunotoxicol. 2015 Apr-Jun;12(2):107-14 [PMID: 24738739]
  36. Cell Mol Life Sci. 2018 Jan;75(1):149-160 [PMID: 29124307]
  37. Food Microbiol. 2014 Feb;37:78-95 [PMID: 24230476]
  38. Front Immunol. 2023 Feb 27;14:1126969 [PMID: 36923404]
  39. Animals (Basel). 2021 Feb 17;11(2): [PMID: 33671449]
  40. Microorganisms. 2020 Apr 15;8(4): [PMID: 32326636]
  41. mSystems. 2021 May 18;6(3): [PMID: 34006629]
  42. BMC Microbiol. 2021 Feb 12;21(1):44 [PMID: 33579191]
  43. PeerJ. 2017 Jan 11;5:e2836 [PMID: 28097056]
  44. Physiol Rev. 1998 Apr;78(2):393-427 [PMID: 9562034]
  45. Bioinformatics. 2012 Aug 15;28(16):2106-13 [PMID: 22711789]
  46. Int J Syst Bacteriol. 1997 Apr;47(2):590-2 [PMID: 9103655]
  47. Drug Metab Rev. 1979;9(2):259-79 [PMID: 39729]
  48. Cells. 2022 Aug 03;11(15): [PMID: 35954238]
  49. Nature. 2011 May 12;473(7346):174-80 [PMID: 21508958]
  50. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  51. Xenobiotica. 1981 Dec;11(12):815-30 [PMID: 7043912]
  52. mSphere. 2021 Feb 24;6(1): [PMID: 33627512]
  53. Physiol Rev. 2010 Jul;90(3):859-904 [PMID: 20664075]
  54. Cell Host Microbe. 2022 Nov 9;30(11):1630-1645.e25 [PMID: 36208631]
  55. Parasite Immunol. 2020 Oct;42(10):e12768 [PMID: 32594532]
  56. Dis Model Mech. 2016 Feb;9(2):101-3 [PMID: 26839397]
  57. Animal Model Exp Med. 2018 Jul 28;1(2):109-115 [PMID: 30891555]
  58. Lab Anim. 1989 Jan;23(1):21-9 [PMID: 2724910]
  59. Int J Med Microbiol. 2016 Aug;306(5):343-355 [PMID: 27053239]

MeSH Term

Animals
Mesocricetus
Gastrointestinal Microbiome
Mice
Cricetinae
RNA, Ribosomal, 16S
Mice, Inbred C57BL
Male
Bacteria
COVID-19
SARS-CoV-2

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0gastrointestinalmicrobiomehamstersSyrianrodentmodelhamsteranimalanalyzedforestomachileumcecumbacterialMuribaculaceaemousemodelsespeciallyHoweverdigestiveunderstandingsampledcolon16SrRNAgeneampliconsequencingdisplayedcommunitydatamicedifferencesdominatedspeciescomparisonallowsbetterMesocricetus���auratusincreasinglyusedrecentyearsSARS-CoV-2sincepandemicphysiologyyetwell-understoodevenlessconsideringtractGenerallyinfluencesimmunesystemdrugmetabolismvaccinationefficacydetailedmissingTherefore10healthy11-week-oldRjHan:AURAfedpelletedstandarddietcontentieglandularstomachusingResultsdistinctdifferencepossiblydueavailablenutrientsfunctionsNextcomparedliteratureyoung-adultC57BL/6JanotherimportantregionsrodentsSurprisinglyfoundstrongspecificcommunitiesinstanceLactobacillaceaeabundanthamsters'SimilarlydominantLachnospiraceaeErysipelotrichaceaeMolecularstrainsspecificitysuitabilityregardingcomparabilityTherebyworkcontributescharacterizationexperimentalplanningCharacterizationMesocricetusauratus

Similar Articles

Cited By