Neighborhood structure-guided brain functional networks estimation for mild cognitive impairment identification.

Lizhong Liang, Zijian Zhu, Hui Su, Tianming Zhao, Yao Lu
Author Information
  1. Lizhong Liang: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
  2. Zijian Zhu: School of Public Health, Guangdong Medical University, Dongguan, China.
  3. Hui Su: Shandong Liaocheng Intelligent Vocational Technical School, Liaocheng, China.
  4. Tianming Zhao: Dalian University, Dalian, China.
  5. Yao Lu: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.

Abstract

The adoption and growth of functional magnetic resonance imaging (fMRI) technology, especially through the use of Pearson's correlation (PC) for constructing brain functional networks (BFN), has significantly advanced brain disease diagnostics by uncovering the brain's operational mechanisms and offering biomarkers for early detection. However, the PC always tends to make for a dense BFN, which violates the biological prior. Therefore, in practice, researchers use hard-threshold to remove weak connection edges or introduce -norm as a regularization term to obtain sparse BFNs. However, these approaches neglect the spatial neighborhood information between regions of interest (ROIs), and ROI with closer distances has higher connectivity prospects than ROI with farther distances due to the principle of simple wiring costs in resent studies. Thus, we propose a neighborhood structure-guided BFN estimation method in this article. In detail, we figure the ROIs' Euclidean distances and sort them. Then, we apply the K-nearest neighbor (KNN) to find out the top K neighbors closest to the current ROIs, where each ROI's K neighbors are independent of each other. We establish the connection relationship between the ROIs and these K neighbors and construct the global topology adjacency matrix according to the binary network. Connect ROI nodes with k nearest neighbors using edges to generate an adjacency graph, forming an adjacency matrix. Based on adjacency matrix, PC calculates the correlation coefficient between ROIs connected by edges, and generates the BFN. With the purpose of evaluating the performance of the introduced method, we utilize the estimated BFN for distinguishing individuals with mild cognitive impairment (MCI) from the healthy ones. Experimental outcomes imply this method attains better classification performance than the baselines. Additionally, we compared it with the most commonly used time series methods in deep learning. Results of the performance of K-nearest neighbor-Pearson's correlation (K-PC) has some advantage over deep learning.

Keywords

References

  1. Neuroimage. 2020 May 1;211:116604 [PMID: 32062083]
  2. Sci Rep. 2023 Jun 28;13(1):10483 [PMID: 37380746]
  3. Neurology. 2022 Oct 25;99(17):e1866-e1874 [PMID: 36028322]
  4. J Biol Chem. 2021 Jan-Jun;296:100105 [PMID: 33219130]
  5. Alzheimers Dement. 2011 May;7(3):270-9 [PMID: 21514249]
  6. Brain Topogr. 2022 Nov;35(5-6):559-571 [PMID: 36138188]
  7. Neuroimage. 2003 Aug;19(4):1273-302 [PMID: 12948688]
  8. Curr Opin Neurol. 2008 Aug;21(4):424-30 [PMID: 18607202]
  9. Neuroimage. 2011 Jan 15;54(2):875-91 [PMID: 20817103]
  10. Artif Intell Med. 2021 Jan;111:102004 [PMID: 33461688]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016114 [PMID: 19658781]
  12. PLoS One. 2020 Jul 24;15(7):e0235039 [PMID: 32707574]
  13. Psychoradiology. 2021 May 11;1(1):42-53 [PMID: 38665309]
  14. Hum Brain Mapp. 2017 May;38(5):2370-2383 [PMID: 28150897]
  15. Brain Topogr. 2008 Dec;21(2):86-92 [PMID: 18841455]
  16. Front Neurosci. 2018 Dec 18;12:959 [PMID: 30618582]
  17. IEEE Trans Biomed Eng. 2020 Jul;67(7):1912-1920 [PMID: 31675312]
  18. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  19. Neurosci Biobehav Rev. 2021 Sep;128:467-478 [PMID: 34245758]
  20. Alzheimers Res Ther. 2022 Aug 3;14(1):107 [PMID: 35922851]
  21. Lancet. 2021 Apr 24;397(10284):1577-1590 [PMID: 33667416]
  22. J Nucl Med. 2005 Oct;46(10):1625-32 [PMID: 16204712]
  23. IEEE Trans Med Imaging. 2011 May;30(5):1154-65 [PMID: 21478072]
  24. Neural Regen Res. 2019 Feb;14(2):242-255 [PMID: 30531004]
  25. Brain. 2020 Jun 1;143(6):1920-1933 [PMID: 32357201]
  26. Elife. 2022 Oct 20;11: [PMID: 36263940]
  27. Front Neuroinform. 2017 Aug 31;11:55 [PMID: 28912708]
  28. Brain Sci. 2022 Jan 05;12(1): [PMID: 35053823]
  29. Science. 2006 Nov 3;314(5800):777-81 [PMID: 17082447]
  30. IEEE J Biomed Health Inform. 2020 Apr;24(4):1160-1168 [PMID: 31403449]
  31. Trends Cogn Sci. 2013 Dec;17(12):666-82 [PMID: 24238796]
  32. Neuroimage. 2011 Jun 15;56(4):2068-79 [PMID: 21459148]
  33. Neurology. 2007 Mar 6;68(10):757-63 [PMID: 17339583]
  34. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  35. J Am Stat Assoc. 2009 Jun 1;104(486):735-746 [PMID: 19881892]
  36. Magn Reson Med. 1996 Mar;35(3):346-55 [PMID: 8699946]
  37. Nature. 2015 Oct 15;526(7573):371-9 [PMID: 26469048]

MeSH Term

Humans
Cognitive Dysfunction
Magnetic Resonance Imaging
Brain
Nerve Net
Brain Mapping
Algorithms

Word Cloud

Created with Highcharts 10.0.0BFNfunctionalcorrelationROIsneighborsadjacencyPCbrainedgesROIdistancesmethodKmatrixperformancecognitiveimpairmentusenetworksHoweverconnectionneighborhoodstructure-guidedestimationK-nearestnetworkmilddeeplearningNeighborhoodadoptiongrowthmagneticresonanceimagingfMRItechnologyespeciallyPearson'sconstructingsignificantlyadvanceddiseasediagnosticsuncoveringbrain'soperationalmechanismsofferingbiomarkersearlydetectionalwaystendsmakedenseviolatesbiologicalpriorThereforepracticeresearchershard-thresholdremoveweakintroduce-normregularizationtermobtainsparseBFNsapproachesneglectspatialinformationregionsinterestcloserhigherconnectivityprospectsfartherdueprinciplesimplewiringcostsresentstudiesThusproposearticledetailfigureROIs'EuclideansortapplyneighborKNNfindtopclosestcurrentROI'sindependentestablishrelationshipconstructglobaltopologyaccordingbinaryConnectnodesknearestusinggenerategraphformingBasedcalculatescoefficientconnectedgeneratespurposeevaluatingintroducedutilizeestimateddistinguishingindividualsMCIhealthyonesExperimentaloutcomesimplyattainsbetterclassificationbaselinesAdditionallycomparedcommonlyusedtimeseriesmethodsResultsneighbor-Pearson'sK-PCadvantageidentificationBrainMildstructurePearson’sSparserepresentation

Similar Articles

Cited By