Glymphatic function and its influencing factors in different glucose metabolism states.

Bin Tian, Chen Zhao, Jia-Li Liang, Hui-Ting Zhang, Yi-Fan Xu, Hui-Lei Zheng, Jia Zhou, Jiang-Nian Gong, Shu-Ting Lu, Zi-San Zeng
Author Information
  1. Bin Tian: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  2. Chen Zhao: Magnetic Resonance Research Collaboration, Siemens Healthineers, Guangzhou 510620, Guangdong Province, China.
  3. Jia-Li Liang: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  4. Hui-Ting Zhang: Magnetic Resonance Research Collaboration, Siemens Healthineers Ltd., Wuhan 430071, Hubei Province, China.
  5. Yi-Fan Xu: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  6. Hui-Lei Zheng: Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  7. Jia Zhou: Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  8. Jiang-Nian Gong: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  9. Shu-Ting Lu: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
  10. Zi-San Zeng: Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China. zengzisan@aliyun.com.

Abstract

BACKGROUND: Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized.
AIM: To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index.
METHODS: Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed.
RESULTS: The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels.
CONCLUSION: Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.

Keywords

References

  1. J Nucl Med. 2017 Sep;58(9):1471-1476 [PMID: 28302766]
  2. J Neurol. 2023 May;270(5):2649-2658 [PMID: 36856846]
  3. Age Ageing. 2023 Jul 1;52(7): [PMID: 37392401]
  4. Sci Transl Med. 2012 Aug 15;4(147):147ra111 [PMID: 22896675]
  5. Diabetes Res Clin Pract. 2018 Apr;138:271-281 [PMID: 29496507]
  6. Thromb Haemost. 2014 Nov;112(5):1024-35 [PMID: 25056722]
  7. J Neuroradiol. 2023 Nov;50(6):562-567 [PMID: 37301366]
  8. Age (Dordr). 2014 Apr;36(2):977-93 [PMID: 24402401]
  9. Parkinsonism Relat Disord. 2023 Feb;107:105254 [PMID: 36584484]
  10. N Engl J Med. 2012 Feb 9;366(6):576-8 [PMID: 22316468]
  11. Nat Rev Cardiol. 2011 Apr;8(4):222-32 [PMID: 21304474]
  12. Crit Care Med. 2018 Sep;46(9):1444-1449 [PMID: 29957712]
  13. Oxid Med Cell Longev. 2021 Feb 16;2021:4034509 [PMID: 33680283]
  14. EBioMedicine. 2018 Jan;27:182-186 [PMID: 29276148]
  15. Neurology. 2015 Aug 4;85(5):450-8 [PMID: 26156513]
  16. Nat Med. 2015 Nov;21(11):1280-9 [PMID: 26437365]
  17. Heart. 2014 Oct;100(20):1613-9 [PMID: 24966306]
  18. Neurochem Res. 2015 Dec;40(12):2583-99 [PMID: 25947369]
  19. Parkinsonism Relat Disord. 2023 Sep;114:105767 [PMID: 37523953]
  20. Eur Heart J. 2018 May 1;39(17):1514-1520 [PMID: 29718151]
  21. Jpn J Radiol. 2022 Feb;40(2):147-158 [PMID: 34390452]
  22. J Neurochem. 2013 Oct;127(2):209-20 [PMID: 23927369]
  23. Pharmacol Rev. 2006 Sep;58(3):342-74 [PMID: 16968945]
  24. Theranostics. 2022 Jan 1;12(3):1117-1131 [PMID: 35154477]
  25. Parkinsonism Relat Disord. 2021 Jan;82:56-60 [PMID: 33248394]
  26. Lancet Diabetes Endocrinol. 2014 Mar;2(3):228-35 [PMID: 24622753]
  27. J Neurosci. 2014 Dec 3;34(49):16180-93 [PMID: 25471560]
  28. J Clin Med. 2018 Nov 01;7(11): [PMID: 30388754]
  29. NPJ Parkinsons Dis. 2022 Dec 21;8(1):174 [PMID: 36543809]
  30. Acta Radiol Open. 2015 Nov 17;4(11):2058460115609635 [PMID: 26634147]
  31. Nat Rev Neurol. 2015 Aug;11(8):457-70 [PMID: 26195256]
  32. Front Hum Neurosci. 2020 Aug 13;14:300 [PMID: 32922272]
  33. Radiology. 2023 Jun;307(5):e221848 [PMID: 37158722]
  34. J Neuroimaging. 2021 May;31(3):569-578 [PMID: 33556226]
  35. Jpn J Radiol. 2017 Apr;35(4):172-178 [PMID: 28197821]
  36. Cardiovasc Res. 2015 May 1;106(2):303-13 [PMID: 25808972]
  37. Am J Transl Res. 2021 May 15;13(5):5395-5403 [PMID: 34150136]
  38. Front Neurosci. 2023 Mar 31;17:1132393 [PMID: 37065921]
  39. Neuroimage. 2022 Nov 15;262:119534 [PMID: 35931311]
  40. PLoS Biol. 2020 May 5;18(5):e3000623 [PMID: 32369477]
  41. J Am Geriatr Soc. 2008 Jun;56(6):1028-36 [PMID: 18384580]
  42. JAMA Intern Med. 2013 Jul 22;173(14):1300-6 [PMID: 23753199]
  43. Alzheimers Dement. 2019 Jan;15(1):25-33 [PMID: 30114414]
  44. Diabetes Care. 2016 Oct;39(10):1684-92 [PMID: 27465265]
  45. J Alzheimers Dis. 2022;90(1):295-303 [PMID: 36120782]
  46. Circulation. 2010 Jan 5;121(1):110-22 [PMID: 20026785]
  47. Radiology. 2021 Dec;301(3):502-514 [PMID: 34665028]
  48. Sci Adv. 2022 Mar 4;8(9):eabm1896 [PMID: 35235351]
  49. Arterioscler Thromb Vasc Biol. 2012 Dec;32(12):2813-20 [PMID: 23152494]
  50. Int J Sports Phys Ther. 2014 Oct;9(5):726-36 [PMID: 25328834]
  51. Int J Mol Sci. 2018 Jul 06;19(7): [PMID: 29986413]
  52. Parkinsonism Relat Disord. 2021 Aug;89:98-104 [PMID: 34271425]
  53. Sci Rep. 2019 Jan 29;9(1):840 [PMID: 30696869]
  54. Brain. 2017 Oct 1;140(10):2691-2705 [PMID: 28969373]
  55. Nat Rev Neurol. 2018 Mar;14(3):168-181 [PMID: 29377010]
  56. Neural Regen Res. 2023 Mar;18(3):485-491 [PMID: 36018151]
  57. Aging Dis. 2024 Aug 1;15(4):1885-1898 [PMID: 37307817]
  58. Fluids Barriers CNS. 2019 Jan 8;16(1):1 [PMID: 30616618]
  59. Diabetologia. 2011 Jul;54(7):1645-52 [PMID: 21360189]
  60. Nutrients. 2019 Aug 15;11(8): [PMID: 31443226]
  61. Lancet Diabetes Endocrinol. 2016 Jun;4(6):537-47 [PMID: 27156051]
  62. Ann Neurol. 2023 Jan;93(1):164-174 [PMID: 36214568]

Word Cloud

Created with Highcharts 10.0.0DTI-ALPSindexgroupT2DMmeanglucosesystemmetabolismprediabetesleft-sidecorrelatedglymphaticdifferentfunctionpatientsimagingright-sideclinicalstatesstudyNGMsignificantlylowerlevelnegativelybraininfluencingfactorstensoralongperivascularspacecalculated222diabetesmellitusresonanceusedMMSEpositivelylipoproteinGlymphaticBACKGROUND:DysfunctionstagesalteredwellcharacterizedAIM:investigatecorrelatespresentemployeddiffusionMETHODS:SamplesizeusingpwrpackageRsoftwarecross-sectionalenrollednormal20type30Tmagneticevaluatemini-mentalstateexaminationassessgeneralcognitivebilateralbasalgangliacorrelationfeaturesassessedRESULTS:lateralizationobservedscorecontrollingsex2-hourpostprandialbloodtotalcholesterollow-densityglycosylatedhemoglobinwaist-to-hipratioheighthigh-densitylevelsCONCLUSION:CerebraldysfunctionmaymainlyoccurstageVariousvariablesfoundaffectenhancesunderstandingpathophysiologydiabeticdamageprovidespotentialbiologicalevidenceearlydiagnosisDiffusionMagneticPrediabetesType

Similar Articles

Cited By