Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands.

Anke-Dorothee Werner, Nils Krapoth, Michael J Norris, Andreas Heine, Gerhard Klebe, Erica Ollmann Saphire, Stephan Becker
Author Information
  1. Anke-Dorothee Werner: Institute for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany. ORCID
  2. Nils Krapoth: Institute for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany.
  3. Michael J Norris: Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada. ORCID
  4. Andreas Heine: Institute of Pharmaceutical Chemistry, University of Marburg, D-35032 Marburg, Hessen, Germany.
  5. Gerhard Klebe: Institute of Pharmaceutical Chemistry, University of Marburg, D-35032 Marburg, Hessen, Germany.
  6. Erica Ollmann Saphire: La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States.
  7. Stephan Becker: Institute for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany. ORCID

Abstract

The matrix protein VP40 of the highly pathogenic Sudan virus (genus ) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.

References

  1. Acta Crystallogr F Struct Biol Commun. 2016 May;72(Pt 5):346-55 [PMID: 27139825]
  2. Virology. 2006 Jan 5;344(1):64-70 [PMID: 16364737]
  3. Cell Rep. 2021 Apr 13;35(2):108986 [PMID: 33852858]
  4. PLoS Pathog. 2021 Dec 9;17(12):e1010078 [PMID: 34882741]
  5. Virulence. 2021 Dec;12(1):885-901 [PMID: 33734027]
  6. Acta Crystallogr D Struct Biol. 2021 Jun 1;77(Pt 6):755-775 [PMID: 34076590]
  7. PLoS One. 2017 Apr 18;12(4):e0175723 [PMID: 28419165]
  8. BMJ Glob Health. 2022 Dec;7(12): [PMID: 36585031]
  9. J Virol. 2005 Feb;79(3):1898-905 [PMID: 15650213]
  10. Structure. 2023 Sep 7;31(9):1038-1051.e7 [PMID: 37392738]
  11. PLoS One. 2015 Nov 25;10(11):e0143447 [PMID: 26606248]
  12. J Biol Chem. 2024 May;300(5):107213 [PMID: 38522519]
  13. Protein Cell. 2022 Feb;13(2):120-140 [PMID: 33141416]
  14. Acta Crystallogr D Struct Biol. 2020 Aug 1;76(Pt 8):771-777 [PMID: 32744259]
  15. Cell. 2019 May 2;177(4):1067-1079.e19 [PMID: 31051099]
  16. J Virol. 2004 Nov;78(22):12277-87 [PMID: 15507615]
  17. J Biol Chem. 2003 Jan 3;278(1):180-6 [PMID: 12409308]
  18. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92 [PMID: 21460446]
  19. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  20. PLoS Pathog. 2018 Jan 16;14(1):e1006848 [PMID: 29338048]
  21. J Biol Chem. 2013 Feb 22;288(8):5779-89 [PMID: 23297401]
  22. BMC Med. 2023 Apr 13;21(1):144 [PMID: 37055861]
  23. ACS Infect Dis. 2020 Oct 9;6(10):2783-2799 [PMID: 32870648]
  24. Medchemcomm. 2017 Oct 17;8(11):2155-2163 [PMID: 30108733]
  25. ChemMedChem. 2021 Jan 8;16(1):292-300 [PMID: 33029876]
  26. Antiviral Res. 2022 Mar;199:105267 [PMID: 35227759]
  27. Nat Commun. 2017 Apr 24;8:15123 [PMID: 28436492]
  28. Cell Host Microbe. 2008 Mar 13;3(3):168-77 [PMID: 18329616]
  29. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  30. Molecules. 2019 Nov 26;24(23): [PMID: 31779114]
  31. Antiviral Res. 2011 Aug;91(2):195-208 [PMID: 21699921]
  32. J Mol Biol. 2000 Jun 30;300(1):103-12 [PMID: 10864502]
  33. Sci Rep. 2017 Aug 23;7(1):9190 [PMID: 28835710]
  34. Biomolecules. 2020 Mar 29;10(4): [PMID: 32235320]
  35. J Virol. 2015 Sep;89(18):9440-53 [PMID: 26136573]
  36. Bioorg Med Chem Lett. 2016 Aug 1;26(15):3429-35 [PMID: 27377328]
  37. J Virol. 2010 Jul;84(14):7053-63 [PMID: 20463076]
  38. Molecules. 2020 Feb 25;25(5): [PMID: 32106588]
  39. Nature. 2020 Oct;586(7828):311-316 [PMID: 32788727]
  40. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  41. ACS Omega. 2023 Nov 20;8(48):46051-46065 [PMID: 38075755]
  42. J Virol. 2002 May;76(10):4855-65 [PMID: 11967302]
  43. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  44. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  45. J Gen Virol. 2019 Jul;100(7):1099-1111 [PMID: 31184566]
  46. Arch Virol. 2023 Aug 3;168(8):220 [PMID: 37537381]
  47. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  48. Br J Pharmacol. 2011 Mar;162(6):1239-49 [PMID: 21091654]
  49. Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877 [PMID: 31588918]
  50. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4471-81 [PMID: 27161622]
  51. Acta Pharmacol Sin. 2023 Jul;44(7):1487-1499 [PMID: 36759643]
  52. J Virol. 2007 Oct;81(20):11452-60 [PMID: 17699576]
  53. Methods Mol Biol. 2011;685:241-52 [PMID: 20981527]
  54. Drug Discov Today. 2003 Oct 1;8(19):876-7 [PMID: 14554012]
  55. Biotechnol Bioeng. 2022 Jan;119(1):199-210 [PMID: 34698368]
  56. ChemMedChem. 2020 Feb 5;15(3):324-337 [PMID: 31808981]
  57. Front Immunol. 2021 Aug 30;12:721328 [PMID: 34526994]
  58. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  59. Viruses. 2020 Dec 31;13(1): [PMID: 33396288]
  60. Structure. 2016 Aug 2;24(8):1398-1409 [PMID: 27452405]
  61. Prog Biophys Mol Biol. 2014 Nov-Dec;116(2-3):92-100 [PMID: 25117499]
  62. Biophys J. 2008 Oct;95(7):3222-31 [PMID: 18599640]
  63. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3974-9 [PMID: 18305167]
  64. Top Curr Chem. 2012;317:1-32 [PMID: 21695633]
  65. Lancet Microbe. 2023 Mar;4(3):e171-e178 [PMID: 36739878]
  66. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [PMID: 19461840]
  67. Antiviral Res. 2022 Nov;207:105426 [PMID: 36183903]

Word Cloud

Created with Highcharts 10.0.0VP40SudanviralbindingacidviruspocketresiduessalicylicproteinbuddingVP40'sfunctionalcrystallographicfragmentsidentifiedL158R214RNAsynthesisdrugmatrixhighlypathogenicgenusmultifunctionalresponsiblerecruitmentnucleocapsidsplasmamembraneinfectiousvirionsadditionroleassemblyalsodownregulatesgenomereplicationtranscriptionexistencevarioushomo-oligomericstatespresumedunderpindiversecapabilitieslifecycleGivenabsencelicensedtherapeuticstargetingstudyfocusedinhibitingdimersstructuralprecursorscriticalhigher-orderoligomersnovelantiviralstrategyestablishedscreeningpipelineidentificationsmall-moleculecapableDimericrecombinantlyexpressedbacteriapurifiedcrystallizedsoakedsolution96differentpreselectedSalicylichitclearelectrondensityN-C-terminidimerinteractionpredominantlycoordinatedaminoleucine158arginine214keystabilizingwithindisplayedminimalimpactaspectsdelveddeepercharacterizingdruggabilityanalyzedinfluenceformationvirus-likeparticlesSite-directedmutagenesisalaninemarkedlyaffectedactivityeffectunderscoringpotentialtargetsummaryfindingslayfoundationstructure-guideddesignprovideleadcompoundsDevelopmentCrystallographicScreeningIdentifyVirusLigands

Similar Articles

Cited By