Akt is a mediator of artery specification during zebrafish development.

Wenping Zhou, Joey J Ghersi, Emma Ristori, Nicole Semanchik, Andrew Prendergast, Rong Zhang, Paola Carneiro, Gabriel Baldissera, William C Sessa, Stefania Nicoli
Author Information
  1. Wenping Zhou: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  2. Joey J Ghersi: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. ORCID
  3. Emma Ristori: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  4. Nicole Semanchik: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  5. Andrew Prendergast: Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA.
  6. Rong Zhang: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  7. Paola Carneiro: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  8. Gabriel Baldissera: Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA.
  9. William C Sessa: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
  10. Stefania Nicoli: Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA. ORCID

Abstract

The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.

Keywords

References

  1. Development. 2009 Dec;136(23):4001-9 [PMID: 19906867]
  2. PLoS One. 2015 Oct 15;10(10):e0140479 [PMID: 26469692]
  3. Sci Signal. 2009 Aug 04;2(82):ra41 [PMID: 19654415]
  4. Sci Rep. 2022 Jul 29;12(1):13065 [PMID: 35906287]
  5. Dev Cell. 2002 Jul;3(1):127-36 [PMID: 12110173]
  6. Elife. 2016 Dec 22;5: [PMID: 28005008]
  7. Cancer Cell. 2002 Apr;1(3):257-67 [PMID: 12086862]
  8. Neurosci Lett. 1996 Sep 27;216(2):109-12 [PMID: 8904795]
  9. Blood. 2013 May 9;121(19):3988-96, S1-9 [PMID: 23529931]
  10. Nature. 2001 Nov 8;414(6860):216-20 [PMID: 11700560]
  11. Cancer Cell. 2006 Aug;10(2):159-70 [PMID: 16904613]
  12. Sci Rep. 2016 Aug 30;6:32386 [PMID: 27572667]
  13. Dev Dyn. 2004 Sep;231(1):204-13 [PMID: 15305301]
  14. Dev Dyn. 1998 Sep;213(1):92-104 [PMID: 9733104]
  15. Science. 2001 Jun 1;292(5522):1728-31 [PMID: 11387480]
  16. Cell. 1999 Feb 5;96(3):307-10 [PMID: 10025395]
  17. Dev Biol. 2022 Jun;486:26-43 [PMID: 35337795]
  18. Development. 2019 Mar 21;146(6): [PMID: 30837221]
  19. J Clin Invest. 2005 Aug;115(8):2119-27 [PMID: 16075056]
  20. Genes Dev. 2001 Sep 1;15(17):2203-8 [PMID: 11544177]
  21. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12865-70 [PMID: 25136137]
  22. Arterioscler Thromb Vasc Biol. 2018 Mar;38(3):e17-e24 [PMID: 29467221]
  23. Dev Cell. 2012 Feb 14;22(2):418-29 [PMID: 22340502]
  24. Nat Med. 1995 Nov;1(11):1143-7 [PMID: 7584985]
  25. Brain Res. 2013 Feb 4;1494:1-8 [PMID: 23219579]
  26. Development. 2014 Apr;141(7):1544-52 [PMID: 24598161]
  27. J Clin Invest. 2008 Nov;118(11):3660-70 [PMID: 18924608]
  28. Development. 2011 Apr;138(8):1573-82 [PMID: 21389051]
  29. Mol Cell. 2002 Jun;9(6):1227-40 [PMID: 12086620]
  30. Dev Biol. 2002 Aug 15;248(2):307-18 [PMID: 12167406]
  31. Nat Commun. 2016 Mar 14;7:10960 [PMID: 26971877]
  32. Nat Rev Mol Cell Biol. 2001 Oct;2(10):760-8 [PMID: 11584303]
  33. Br J Cancer. 2011 May 24;104(11):1755-61 [PMID: 21505451]
  34. Curr Biol. 2006 Jul 11;16(13):1366-72 [PMID: 16824925]
  35. Curr Top Dev Biol. 2010;90:43-72 [PMID: 20691847]
  36. Cell Tissue Res. 2009 Jan;335(1):5-16 [PMID: 18972135]
  37. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  38. PLoS One. 2008 Aug 06;3(8):e2850 [PMID: 18682746]
  39. Development. 1996 Dec;123:285-92 [PMID: 9007248]
  40. Nat Methods. 2015 Oct;12(10):982-8 [PMID: 26322839]
  41. J Biol Chem. 2011 Mar 11;286(10):8055-8066 [PMID: 21212269]
  42. Science. 2018 Jun 1;360(6392):981-987 [PMID: 29700229]
  43. Development. 2005 Jul;132(13):2943-54 [PMID: 15930105]
  44. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2110-5 [PMID: 10051603]
  45. Development. 2011 May;138(9):1705-15 [PMID: 21429985]
  46. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  47. J Clin Invest. 2010 Apr;120(4):1217-28 [PMID: 20237411]
  48. Nat Cell Biol. 2023 Aug;25(8):1135-1145 [PMID: 37460694]
  49. Science. 1997 Jan 31;275(5300):665-8 [PMID: 9005852]
  50. Commun Biol. 2020 Dec 4;3(1):734 [PMID: 33277595]
  51. Genes Dev. 2003 Jun 1;17(11):1352-65 [PMID: 12782654]
  52. Science. 2009 Oct 9;326(5950):294-8 [PMID: 19815777]
  53. Development. 2016 Oct 15;143(20):3796-3805 [PMID: 27578780]
  54. Nat Rev Genet. 2001 Jan;2(1):39-48 [PMID: 11253067]
  55. Development. 1996 Jan;122(1):271-80 [PMID: 8565839]
  56. Cell. 2007 Jun 29;129(7):1261-74 [PMID: 17604717]
  57. Mol Cell Biol. 2005 Dec;25(23):10407-18 [PMID: 16287854]
  58. Dev Biol. 2001 Feb 15;230(2):278-301 [PMID: 11161578]
  59. Development. 2001 Oct;128(19):3675-83 [PMID: 11585794]
  60. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  61. Science. 2020 Dec 4;370(6521):1186-1191 [PMID: 33273096]
  62. Sci Rep. 2015 Mar 05;5:8782 [PMID: 25740432]
  63. Development. 1997 Jan;124(2):381-9 [PMID: 9053314]
  64. Biol Open. 2018 Apr 9;7(4): [PMID: 29535102]
  65. Nat Genet. 2023 Nov;55(11):1792-1806 [PMID: 37904052]
  66. J Biol Chem. 2003 Aug 22;278(34):32124-31 [PMID: 12783884]
  67. Nat Rev Cardiol. 2023 Mar;20(3):197-210 [PMID: 36198871]
  68. J Biol Chem. 1998 Nov 13;273(46):30336-43 [PMID: 9804796]
  69. Cold Spring Harb Perspect Med. 2012 May;2(5):a006684 [PMID: 22553495]
  70. Front Cell Dev Biol. 2021 Jun 25;9:691335 [PMID: 34249941]
  71. FEBS Open Bio. 2019 Mar 20;9(4):801-813 [PMID: 30984553]
  72. Elife. 2020 Aug 03;9: [PMID: 32744507]
  73. Nat Rev Genet. 2002 Sep;3(9):674-82 [PMID: 12209142]
  74. EMBO J. 2016 Nov 2;35(21):2315-2331 [PMID: 27638855]
  75. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. /Fondation Leducq
  2. /Yale University
  3. R35 HL139945/NHLBI NIH HHS
  4. /American Heart Association
  5. R01 DK118728/NIDDK NIH HHS
  6. R01 HL170949/NHLBI NIH HHS
  7. R01DK118728-01/NIH HHS
  8. R01 NS109160/NINDS NIH HHS
  9. P01 HL1070205/NIA NIH HHS
  10. P01 HL107205/NHLBI NIH HHS

MeSH Term

Animals
Zebrafish
Proto-Oncogene Proteins c-akt
Zebrafish Proteins
Receptors, Notch
Arteries
Gene Expression Regulation, Developmental
Endothelial Cells
Signal Transduction
Mutation
Embryo, Nonmammalian
Vascular Endothelial Growth Factor A

Chemicals

Proto-Oncogene Proteins c-akt
Zebrafish Proteins
Receptors, Notch
Vascular Endothelial Growth Factor A

Word Cloud

Created with Highcharts 10.0.0specificationAktarterialendothelialaktΔ/ΔDAprocesscellsNotchdevelopmentembryoniccardiovascularformationvenousinvolvedkinasezebrafishmutantexpression-malformationscellarterydorsalaortafirstmajorbloodvesseldevelopsystemgovernedcoordinatedinvolvingmigrationarrangementangioblastslineagesconservedacrossspeciesAlthoughvasculargrowthfactorVEGF-AknowndrivekinasesremainambiguousThusinvestigatedroleproteinBgeneratingquadrupleactivitygenesakt1-2-3a-3bstronglydecreasedLiveimagingdevelopinguncoversearlyarteriovenousSingle-cellRNA-sequencinganalysiscorroboratesimpairmentyetNotablyspecificligand-independentactivationconstitutivelyactiveAkt1sufficientre-establishnormalloss-of-functionunveilscanactupstreampropershedslightrevealingmechanismbehindcongenitalmediatorsignalingArteryEndothelialSingleRNAsequencingVascularZebrafishembryo

Similar Articles

Cited By