Small GTPase ActIvitY ANalyzing (SAIYAN) system: A method to detect GTPase activation in living cells.

Miharu Maeda, Masashi Arakawa, Yukie Komatsu, Kota Saito
Author Information
  1. Miharu Maeda: Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan. ORCID
  2. Masashi Arakawa: Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan. ORCID
  3. Yukie Komatsu: Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan. ORCID
  4. Kota Saito: Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan. ORCID

Abstract

Small GTPases are essential in various cellular signaling pathways, and detecting their activation within living cells is crucial for understanding cellular processes. The current methods for detecting GTPase activation using fluorescent proteins rely on the interaction between the GTPase and its effector. Consequently, these methods are not applicable to factors, such as Sar1, where the effector also functions as a GTPase-activating protein. Here, we present a novel method, the Small GTPase ActIvitY ANalyzing (SAIYAN) system, for detecting the activation of endogenous small GTPases via fluorescent signals utilizing a split mNeonGreen system. We demonstrated Sar1 activation at the endoplasmic reticulum (ER) exit site and successfully detected its activation state in various cellular conditions. Utilizing the SAIYAN system in collagen-secreting cells, we discovered activated Sar1 localized both at the ER exit sites and ER-Golgi intermediate compartment (ERGIC) regions. Additionally, impaired collagen secretion confined the activated Sar1 at the ER exit sites, implying the importance of Sar1 activation through the ERGIC in collagen secretion.

References

  1. J Am Chem Soc. 2005 Jan 12;127(1):146-57 [PMID: 15631464]
  2. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  3. Physiol Rev. 2013 Jan;93(1):269-309 [PMID: 23303910]
  4. J Cell Biol. 2001 Dec 10;155(6):937-48 [PMID: 11739406]
  5. Proc Natl Acad Sci U S A. 1990 May;87(9):3562-5 [PMID: 2185475]
  6. J Biochem. 2004 Dec;136(6):755-60 [PMID: 15671485]
  7. Dev Cell. 2007 Nov;13(5):623-634 [PMID: 17981132]
  8. Clin Genet. 2011 Aug;80(2):169-76 [PMID: 21039434]
  9. Front Cell Dev Biol. 2017 Aug 23;5:75 [PMID: 28879181]
  10. Nat Biotechnol. 2005 Jan;23(1):102-7 [PMID: 15580262]
  11. J Cell Biol. 2021 Jun 7;220(6): [PMID: 33999114]
  12. J Cell Biol. 2021 Jun 7;220(6): [PMID: 33852719]
  13. Dev Cell. 2003 Oct;5(4):583-94 [PMID: 14536060]
  14. J Cell Biol. 2014 Sep 15;206(6):751-62 [PMID: 25202031]
  15. Nat Commun. 2017 Aug 29;8(1):370 [PMID: 28851864]
  16. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3501-8 [PMID: 27274053]
  17. Mol Biol Cell. 2016 Jul 1;27(13):2008-13 [PMID: 27170179]
  18. Cell. 1998 Dec 23;95(7):993-1003 [PMID: 9875853]
  19. Nature. 1993 Sep 23;365(6444):347-9 [PMID: 8377826]
  20. J Cell Biol. 2017 Jun 5;216(6):1731-1743 [PMID: 28442536]
  21. Oncogene. 1997 Feb 6;14(5):623-5 [PMID: 9053862]
  22. Am J Hum Genet. 2015 Mar 5;96(3):432-9 [PMID: 25683121]
  23. Front Cell Dev Biol. 2020 Nov 20;8:571388 [PMID: 33330450]
  24. Elife. 2018 Mar 07;7: [PMID: 29513218]
  25. Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2310404120 [PMID: 38147551]
  26. J Cell Biol. 2005 Dec 19;171(6):919-24 [PMID: 16344311]
  27. FEBS Lett. 2023 Mar;597(6):865-882 [PMID: 36737236]
  28. J Cell Biol. 2010 Jul 12;190(1):115-28 [PMID: 20624903]
  29. Science. 1998 Jan 16;279(5349):349-52 [PMID: 9454332]
  30. J Cell Biol. 2001 Jan 8;152(1):213-29 [PMID: 11149932]
  31. Sci Rep. 2018 Apr 18;8(1):6175 [PMID: 29670150]
  32. Traffic. 2006 Dec;7(12):1678-87 [PMID: 17005010]
  33. Mol Biol Cell. 2016 Sep 1;27(17):2688-96 [PMID: 27413011]
  34. J Biol Chem. 1987 Aug 5;262(22):10426-9 [PMID: 3038880]
  35. J Biol Chem. 2012 Mar 23;287(13):10134-10144 [PMID: 22298774]
  36. FEBS Lett. 1988 Aug 15;236(1):185-9 [PMID: 3042464]
  37. J Biochem. 2019 Aug 1;166(2):115-119 [PMID: 31098622]
  38. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  39. Nature. 2001 Jun 28;411(6841):1065-8 [PMID: 11429608]
  40. Science. 1993 Mar 5;259(5100):1466-8 [PMID: 8451644]
  41. Nat Cell Biol. 2001 Jun;3(6):531-7 [PMID: 11389436]
  42. Sci Rep. 2011;1:17 [PMID: 22355536]
  43. Dev Cell. 2020 Oct 26;55(2):237-250.e5 [PMID: 32818468]
  44. Cell. 2005 Aug 26;122(4):605-17 [PMID: 16122427]
  45. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13759-64 [PMID: 16945906]
  46. J Biol Chem. 1982 Oct 10;257(19):11416-23 [PMID: 6288684]
  47. Nat Genet. 2006 Oct;38(10):1192-7 [PMID: 16980979]
  48. Curr Biol. 1996 Dec 1;6(12):1621-7 [PMID: 8994826]
  49. FEBS Lett. 2023 Mar;597(6):717-720 [PMID: 36974464]
  50. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  51. Cell. 2021 Apr 29;184(9):2412-2429.e16 [PMID: 33852913]
  52. J Cell Sci. 2021 Sep 1;134(17): [PMID: 34357388]
  53. Elife. 2015 Nov 14;4: [PMID: 26568311]
  54. Nature. 1998 Jan 8;391(6663):187-90 [PMID: 9428766]
  55. EMBO J. 2022 Sep 15;41(18):e110596 [PMID: 35938214]
  56. Cell Rep. 2023 Jun 27;42(6):112635 [PMID: 37300835]
  57. Nat Protoc. 2009;4(11):1623-31 [PMID: 19834477]
  58. Dev Cell. 2022 Feb 28;57(4):512-525.e8 [PMID: 35051356]
  59. Cell. 2009 Mar 6;136(5):891-902 [PMID: 19269366]
  60. J Cell Sci. 2004 Mar 15;117(Pt 8):1313-8 [PMID: 15020671]
  61. Nature. 2002 Sep 19;419(6904):271-7 [PMID: 12239560]
  62. Anal Biochem. 2016 Dec 15;515:22-25 [PMID: 27665678]
  63. Mol Biol Cell. 2011 Jul 1;22(13):2301-8 [PMID: 21525241]
  64. Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2212513120 [PMID: 36780528]
  65. Elife. 2013 Sep 17;2:e00951 [PMID: 24062940]
  66. Nat Genet. 1999 Jan;21(1):111-4 [PMID: 9916802]
  67. Traffic. 2022 Jan;23(1):81-93 [PMID: 34761479]
  68. J Cell Biol. 2019 Mar 4;218(3):737-739 [PMID: 30718263]
  69. Elife. 2014 Dec 15;3:e04766 [PMID: 25497837]
  70. J Cell Biol. 1995 Nov;131(4):875-93 [PMID: 7490291]
  71. J Cell Biol. 1994 Apr;125(1):51-65 [PMID: 8138575]
  72. Dev Cell. 2007 Nov;13(5):635-645 [PMID: 17981133]
  73. Annu Rev Biophys. 2019 May 6;48:19-44 [PMID: 30786230]

Grants

  1. 20K15740/Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research
  2. /Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. /Akita University
  4. /Naito Foundation
  5. /Takeda Science Foundation
  6. 19-6005/Toray Science Foundation
  7. /Sumitomo Foundation
  8. /Suzuken Memorial Foundation
  9. /Yasuda Medical Foundation
  10. /Foundation for Promotion of Cancer Research
  11. /Asahi Glass Foundation
  12. /Princess Takamatsu Cancer Research Foundation
  13. /Japan Foundation for Applied Enzymology
  14. /Kato Memorial Bioscience Foundation
  15. /Astellas Foundation for Research on Metabolic Disorders
  16. /Inamori Foundation
  17. /Kao Foundation for Arts and Sciences
  18. /Koyanagi Foundation

MeSH Term

Monomeric GTP-Binding Proteins
Endoplasmic Reticulum
Humans
Golgi Apparatus
Animals
Enzyme Activation
Collagen
HeLa Cells

Chemicals

Monomeric GTP-Binding Proteins
Collagen
SAR1A protein, human

Word Cloud

Created with Highcharts 10.0.0activationGTPaseSar1SmallcellulardetectingcellsSAIYANsystemERexitGTPasesvariouslivingmethodsfluorescenteffectormethodActIvitYANalyzingactivatedsitesERGICcollagensecretionessentialsignalingpathwayswithincrucialunderstandingprocessescurrentusingproteinsrelyinteractionConsequentlyapplicablefactorsalsofunctionsGTPase-activatingproteinpresentnovelendogenoussmallviasignalsutilizingsplitmNeonGreendemonstratedendoplasmicreticulumsitesuccessfullydetectedstateconditionsUtilizingcollagen-secretingdiscoveredlocalizedER-GolgiintermediatecompartmentregionsAdditionallyimpairedconfinedimplyingimportancesystem:detect

Similar Articles

Cited By

No available data.