Recent Insights into the Neurobiology of Alzheimer's Disease and Advanced Treatment Strategies.

Mandeep Kumar Singh, Komal Kohat, Santenna Chenchula, Lakshmi Sahitya Amerneni, Madhav Rao Chavan, Shvetank Bhatt
Author Information
  1. Anitha K: School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to University, Shirpur, 425405, India.
  2. Mandeep Kumar Singh: Amity Institute of Pharmacy, Amity University, Gwalior, India.
  3. Komal Kohat: All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India.
  4. Sri Varshini T: All India Institute of Medical Sciences, Raipur, 462020, India.
  5. Santenna Chenchula: Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, 462020, India. csanten7@gmail.com.
  6. Padmavathi R: SVS Medical College, Hyderabad, Telangana, India.
  7. Lakshmi Sahitya Amerneni: Guntur Medical College, Guntur, Andhra Pradesh, India.
  8. Vishnu Vardhan K: All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India.
  9. Mythili Bai K: Siddhartha Medical College, Vijayawada, India.
  10. Madhav Rao Chavan: All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India.
  11. Shvetank Bhatt: School of Health Sciences and Technology, MIT World Peace University, Dr. Vishwanath Karad, Pune, 411038, Maharashtra, India.

Abstract

In recent years, significant advancements have been made in understanding Alzheimer's disease from both neurobiological and clinical perspectives. Exploring the complex systems underlying AD has unveiled insights that could potentially revolutionize therapeutic approaches. Recent investigations have highlighted intricate interactions among genetic, molecular, and environmental factors in AD. Optimism arises from neurobiological advancements and diverse treatment options, potentially slowing or halting disease progression. Amyloid-beta plaques and tau protein tangles crucially influence AD onset and progression. Emerging treatments involve diverse strategies, such as approaches targeting multiple pathways involved in AD pathogenesis, such as inflammation, oxidative stress, and synaptic dysfunction pathways. Clinical trials using humanized monoclonal antibodies, focusing on immunotherapies eliminating amyloid-beta, have shown promise. Nonpharmacological interventions such as light therapy, electrical stimulation, cognitive training, physical activity, and dietary changes have drawn attention for their potential to slow cognitive aging and enhance brain health. Precision medicine, which involves tailoring therapies to individual genetic and molecular profiles, has gained traction. Ongoing research and interdisciplinary collaboration are expected to yield more effective treatments.

Keywords

References

  1. World Health Organization (2023) Dementia. available at:  https://www.who.int/news-room/fact-sheets/detail/dementia . (Accessed on January 2024)
  2. Wang Y, Branicky R, No�� A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signalling. J Cell Biol 217:1915 [PMID: 29669742]
  3. Conti Filho CE, Loss LB, Marcolongo-Pereira C, Junior Rossoni et al (2023) Advances in Alzheimer���s disease���s pharmacological treatment. Front Pharmacol 14:1101452 [PMID: 36817126]
  4. Poudel P, Park S (2022) Recent advances in the treatment of Alzheimer���s disease using nanoparticle-based drug delivery systems. Pharmaceutics 14:835 [PMID: 35456671]
  5. Prasansuklab A, Tencomnao T (2013) Amyloidosis in Alzheimer���s Disease: The Toxicity of Amyloid Beta (A �� ), Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy. Evid Based Complement Alternat Med. 2013:413808. https://doi.org/10.1155/2013/413808
  6. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer���s disease: causes and treatment. Molecules 25:5789 [PMID: 33302541]
  7. Andersen E, Casteigne B, Chapman WD, Creed A, Foster F, Lapins A et al (2021) Diagnostic biomarkers in Alzheimer���s disease. Biomark Neuropsychiatr 5:100041 [DOI: 10.1016/j.bionps.2021.100041]
  8. King A, Bodi I, Troakes C (2020) The neuropathological diagnosis of Alzheimer���s disease���the challenges of pathological mimics and concomitant pathology. Brain Sci 10:1���23 [DOI: 10.3390/brainsci10080479]
  9. Shakir MN, Dugger BN (2022) Advances in deep neuropathological phenotyping of Alzheimer disease: past, present, and future. J Neuropathol Exp Neurol 81:2���15 [PMID: 34981115]
  10. Deture MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer���s disease. Mol Neurodegener 14:32 [PMID: 31375134]
  11. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med 1:006189 [DOI: 10.1101/cshperspect.a006189]
  12. Kocahan S, Do��an Z (2017) Mechanisms of Alzheimer���s disease pathogenesis and prevention: the brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 15:1 [PMID: 28138104]
  13. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analysing dendritic spine pathology in Alzheimer���s disease: problems and opportunities. Acta Neuropathol 130:1���19 [PMID: 26063233]
  14. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205���1235 [PMID: 28713158]
  15. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ et al (2005) Natural oligomers of the amyloid-�� protein specifically disrupt cognitive function. Nat Neurosci 8:79���84 [PMID: 15608634]
  16. von Bonhorst FP, Gall D, DuPont G (2022) Impact of ��-amyloids induced disruption of Ca2+ homeostasis in a simple model of neuronal activity. Cells 11:615 [DOI: 10.3390/cells11040615]
  17. Wolfe MS, Li W, Trabocchi A (2021) Probing mechanisms and therapeutic potential of ��-secretase in Alzheimer���s disease. Molecules 26:388 [PMID: 33450968]
  18. Jeremic D, Jim��nez-D��az L, Navarro-L��pez JD (2021) Past, present and future of therapeutic strategies against amyloid-�� peptides in Alzheimer���s disease: a systematic review. Ageing Res Rev 72:101496. https://doi.org/10.1016/J.ARR.2021.101496 [DOI: 10.1016/J.ARR.2021.101496]
  19. Wagemann O, Liu H, Wang G, Shi X, Bittner T, Scelsi MA et al (2024) Dominantly inherited Alzheimer network���trials unit Downstream biomarker effects of gantenerumab or solanezumab in dominantly inherited Alzheimer disease: the DIAN-TU-001 randomized clinical trial. JAMA Neurol 81(6):582���93 [PMID: 38683602]
  20. Medeiros R, Baglietto-Vargas D, Laferla FM (2011) The role of tau in Alzheimer���s disease and related disorders. CNS Neurosci Ther 17:514 [PMID: 20553310]
  21. Alquezar C, Arya S, Kao AW (2020) Tau posttranslational modifications: dynamic transformers of tau function, degradation, and aggregation. Front Neurol 11:595532 [PMID: 33488497]
  22. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665 [PMID: 28386764]
  23. McKibben KM, Rhoades E (2013) Independent tubulin binding and polymerization by the proline-rich region of tau is regulated by tau���s N-terminal domain. J Biol Chem 294:19381. https://doi.org/10.1074/JBC.RA119.010172 [DOI: 10.1074/JBC.RA119.010172]
  24. Holper S, Watson R, Yassi N (2022) Tau as a biomarker of neurodegeneration. Int J Mol Sci 23(13):7307. https://doi.org/10.3390/IJMS23137307 [DOI: 10.3390/IJMS23137307]
  25. Sayas CL, ��vila J (2021) GSK-3 and tau: a key duet in Alzheimer���s disease. Cells, 10(4). https://doi.org/10.3390/CELLS10040721
  26. Sebasti��n-Serrano ��, De Diego-Garc��a L, D��az-Hern��ndez M (2018) The neurotoxic role of extracellular tau protein. Int J Mol Sci 19:998 [PMID: 29584657]
  27. Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M et al (2021) Role of neurotoxicants in the pathogenesis of Alzheimer���s disease: a mechanistic insight. Ann Med 53:1476. https://doi.org/10.1080/07853890.2021.1966088 [DOI: 10.1080/07853890.2021.1966088]
  28. Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P (2021) Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics 9:142 [PMID: 34204190]
  29. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI (2020) Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 25:2932. https://doi.org/10.1038/S41380-019-0375-7 [DOI: 10.1038/S41380-019-0375-7]
  30. Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, Ijsselsteijn ME, de Miranda NF et al (2021) Iron loading is a prominent feature of activated microglia in Alzheimer���s disease patients. Acta Neuropathol Commun 9:1���15 [DOI: 10.1186/s40478-021-01126-5]
  31. T��nnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer���s disease. Journal of Alzheimer���s Disease 57:1105 [PMID: 28059794]
  32. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer���s disease. Redox Biol 14:450 [PMID: 29080524]
  33. Ajoolabady A, Lindholm D, Ren J, Pratico D (2022) ER stress and UPR in Alzheimer���s disease: mechanisms, pathogenesis, treatments. Cell Death Dis 13:1���15 [DOI: 10.1038/s41419-022-05153-5]
  34. Llanos-Gonz��lez E, Henares-Chavarino ��A, Pedrero-Prieto CM, Garc��a-Carpintero S, Fronti����n-Rubio J, Sancho-Bielsa FJ et al (2020) Interplay between mitochondrial oxidative disorders and proteostasis in Alzheimer���s Disease. Front Neurosci 13:507129 [DOI: 10.3389/fnins.2019.01444]
  35. Kadry H, Noorani B, Cucullo L (2020) A blood���brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:69 [PMID: 33208141]
  36. Tarawneh R (2023) Microvascular contributions to Alzheimer disease pathogenesis: is Alzheimer disease primarily an endotheliopathy? Biomolecules 2023(13):830 [DOI: 10.3390/biom13050830]
  37. Janaszak���Jasiecka A, Siekierzycka A, P��oska A, Dobrucki IT, Kalinowski L (2021) Endothelial dysfunction driven by hypoxia���the influence of oxygen deficiency on NO bioavailability. Biomolecules 11(7): https://doi.org/10.3390/BIOM11070982
  38. Hellenthal KEM, Brabenec L, Wagner NM (2022) Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells 11:1935 [PMID: 35741064]
  39. Beel AJ, Sakakura M, Barrett PJ, Sanders CR (2010) Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer���s disease relationships? Biochem Biophys Acta 1801:975 [PMID: 20304095]
  40. Rudajev V, Novotny J (2023) Cholesterol-dependent amyloid �� production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 13(1):1���23. https://doi.org/10.1186/S13578-023-01127-Y [DOI: 10.1186/S13578-023-01127-Y]
  41. Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer���s disease. Neurobiol Dis 107:41. https://doi.org/10.1016/J.NBD.2016.07.007 [DOI: 10.1016/J.NBD.2016.07.007]
  42. Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q (2018) Role of blood-brain barrier in Alzheimer���s disease. J Alzheimer���s Dis: JAD 63:1223���1234 [PMID: 29782323]
  43. Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P et al (2022) Vascular endothelial growth factor receptor-1 modulates hypoxia-mediated endothelial senescence and cellular membrane stiffness via YAP-1 pathways. Front Cell Dev Biol 10:903047 [PMID: 35846360]
  44. Sardar Sinha M, Ansell-Schultz A, Civitelli L, Hildesj�� C, Larsson M, Lannfelt L, Ingelsson M, Hallbeck M (2018) Alzheimer���s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 136:41���56 [PMID: 29934873]
  45. Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J et al (2019) Concordance between the assessment of A��42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimer���s Dement 15:1071���1080 [DOI: 10.1016/j.jalz.2019.05.002]
  46. Vandendriessche C, Bruggeman A, Van Cauwenberghe C, Vandenbroucke RE (2020) Extracellular vesicles in Alzheimer���s and Parkinson���s disease: small entities with large consequences. Cells 9. https://doi.org/10.3390/CELLS9112485
  47. Kapogiannis D, Avgerinos KI (2020) Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. Int Rev Neurobiol 154:79���110 [PMID: 32739015]
  48. Zheng M, Wang P (2021) Role of insulin receptor substance-1 modulating PI3K/Akt insulin signalling pathway in Alzheimer���s disease. 3 Biotech 11:179 [PMID: 33927970]
  49. Clemente-Su��rez VJ, Redondo-Fl��rez L, Beltr��n-Velasco AI, Ramos-Campo DJ, Belinch��n-deMiguel P, Martinez-Guardado I et al (2023) Mitochondria and brain disease: a comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 11:2488 [PMID: 37760929]
  50. Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ (2018) Advanced glycation end products modulate amyloidogenic APP processing and tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer���s disease. ACS Chem Neurosci 9:988���1000 [PMID: 29384651]
  51. Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94 [PMID: 30643230]
  52. Jack CR Jr, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C et al (2024) Revised criteria for diagnosis and staging of Alzheimer���s disease: Alzheimer���s Association Workgroup. Alzheimers Dement. https://doi.org/10.1002/alz.13859 [DOI: 10.1002/alz.13859]
  53. Bomasang-Layno E, Bronsther R (2021) Diagnosis and treatment of Alzheimer���s disease: an update. Dela J Public Health 7:74���85. https://doi.org/10.32481/djph.2021.09.009 [DOI: 10.32481/djph.2021.09.009]
  54. Avgerinos KI, Ferrucci L, Kapogiannis D (2021) Effects of monoclonal antibodies against amyloid-�� on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer���s disease. Ageing Res Rev 68:101339. https://doi.org/10.1016/j.arr.2021.101339 [DOI: 10.1016/j.arr.2021.101339]
  55. Chenchula S, Padmavathi R (2022) Accelerated approval of highly expensive disease-modifying agents: lessons learned from the aducanumab approval. JPPM 8:1���4
  56. FDA grants accelerated approval for Alzheimer���s drug. US Food and Drug Administration. Available at: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug (Accessed on March 07, 2024).
  57. Rabinovici GD (2021) Controversy and progress in Alzheimer���s disease ��� FDA approval of aducanumab. N Engl J Med 385:771 [PMID: 34320284]
  58. Petersen RC (2021) Aducanumab: What about the Patient? Ann Neurol 90:334 [PMID: 34322904]
  59. Aduhelm (aducanumab-avwa injection) (2021). US FDA approved product information; Cambridge, MA: Biogen Inc;. (Available online at https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761178s000lbl.pdf (Accessed June 07, 2021)).
  60. Alexander GC, Knopman DS, Emerson SS et al (2021) Revisiting FDA approval of aducanumab. N Engl J Med 385:769 [PMID: 34320282]
  61. Dunn B, Stein P, Temple R, Cavazzoni P (2021) An appropriate use of accelerated approval - aducanumab for Alzheimer���s disease. N Engl J Med 385:856 [PMID: 34320283]
  62. Knopman DS, Perlmutter JS (2021) Prescribing aducanumab in the face of meager efficacy and real risks. Neurology 97:545 [PMID: 34233938]
  63. Alexander GC, Karlawish J (2021) The problem of aducanumab for the treatment of Alzheimer disease. Ann Intern Med 174:1303 [PMID: 34138642]
  64. Moghavem N, Henderson VW, Greicius MD (2021) Medicare should not cover aducanumab as a treatment for Alzheimer���s disease. Ann Neurol 90:331 [PMID: 34278596]
  65. Hershey LA, Tarawneh R (2021) Clinical efficacy, drug safety, and surrogate endpoints: has aducanumab met all of its expectations? Neurology 97:517 [PMID: 34233940]
  66. Salinas RA (2021) Aducanumab for Alzheimer���s disease: expediting approval and delaying science. BMJ Evid Based Med 26:214 [PMID: 34261765]
  67. Cummings J, Salloway S (2022) Aducanumab: appropriate use recommendations. Alzheimer���s Dement 18:531 [DOI: 10.1002/alz.12444]
  68. Mahase E (2023) Curb antidepressant prescribing to improve mental health, say campaigners. BMJ. 5(383):2873. https://doi.org/10.1136/bmj.p2873
  69. Tucker S, M��ller C, Tegerstedt K et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-�� protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimer���s Dis 43:575���588 [DOI: 10.3233/JAD-140741]
  70. S��derberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G et al (2022) Lecanemab, aducanumab, and gantenerumab ��� binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer���s disease. Neurotherapeutics. https://doi.org/10.1007/s13311-022-01308-6 [DOI: 10.1007/s13311-022-01308-6]
  71. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK et al (2021) A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer���s disease with lecanemab, an anti-A�� protofibril antibody. Alzheimers Res Ther 13:80 [PMID: 33865446]
  72. Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M et al (2023) Lecanemab in early Alzheimer���s disease. N Engl J Med 388:9���21. https://doi.org/10.1056/NEJMoa2212948 [DOI: 10.1056/NEJMoa2212948]
  73. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW et al (2021) Donanemab in early Alzheimer���s disease. N Engl J Med 384(18):1691���1704 [PMID: 33720637]
  74. FDA grants accelerated approval for Alzheimer���s drug. US Food and Drug Administration. Available at: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-adults-alzheimers-disease (Accessed on July 05, 2024).
  75. Lowe SL, Willis BA, Hawdon A (2021) Donanemab (LY3002813) dose-escalation study in Alzheimer���s disease. Alzheimers Dement (N Y) 7:e12112. https://doi.org/10.1002/trc2.12112 [DOI: 10.1002/trc2.12112]
  76. Navitsky M, Joshi AD, Kennedy I, Klunk WE, Rowe CC, Wong DF et al (2018) Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the centiloid scale. Alzheimers Dement 14:1565���1571. https://doi.org/10.1016/j.jalz.2018.06.1353 [DOI: 10.1016/j.jalz.2018.06.1353]
  77. Shcherbinin S, Evans CD, Lu M, Andersen SW, Pontecorvo MJ, Willis BA et al (2022) Association of amyloid reduction after donanemab treatment with tau pathology and clinical outcomes: the TRAILBLAZER-ALZ randomized clinical trial. JAMA Neurol 79:1015 [PMID: 36094645]
  78. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F et al (2012) Gantenerumab: a novel human anti-A�� antibody demonstrates sustained cerebral amyloid-�� binding and elicits cell-mediated removal of human amyloid-��. J Alzheimers Dis 28(1):49���69. https://doi.org/10.3233/JAD-2011-110977 [DOI: 10.3233/JAD-2011-110977]
  79. Bateman RJ, Smith J, Donohue MC, Delmar P, Abbas R, Salloway S, GRADUATE I and II Investigators and the Gantenerumab Study Group et al (2023) Two phase 3 trials of gantenerumab in early Alzheimer���s disease. N Engl J Med. 389(20):1862���76 [PMID: 37966285]
  80. Sobral MVS, Soares VG, Gon��alves OR, de Abreu VS, Bendaham LCAR, Batista BLL et al (2024) Efficacy and safety of gantenerumab in the treatment of Alzheimer���s disease: a meta-analysis of randomized controlled trials. Arch Gerontol Geriatr Plus 1:100016 [DOI: 10.1016/j.aggp.2024.100016]
  81. Dysken MW, Sano M, Asthana S et al (2014) Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 311:33 [PMID: 24381967]
  82. Farina N, Llewellyn D, Isaac MG, Tabet N (2017) Vitamin E for Alzheimer���s dementia and mild cognitive impairment. Cochrane Database Syst Rev 1:CD002854 [PMID: 28128435]
  83. Galasko DR, Peskind E, Clark CM et al (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836 [PMID: 22431837]
  84. Miller ER, Pastor-Barriuso R, Dalal D (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142:37 [PMID: 15537682]
  85. McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Syst Rev 2:CD003154
  86. Birks J (2006) Cholinesterase inhibitors for Alzheimer���s disease. Cochrane Database Syst Rev 2006:005593
  87. Hanney M, Prasher V, Williams N et al (2012) Memantine for dementia in adults older than 40 years with Down���s syndrome (MEADOWS): a randomized, double-blind, placebo-controlled trial. Lancet 379:528 [PMID: 22236802]
  88. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H (2005) Cholinesterase inhibitors for patients with Alzheimer���s disease: systematic review of randomized clinical trials. BMJ 331:321 [PMID: 16081444]
  89. Schneider LS, Dagerman KS, Higgins JP, McShane R (2011) Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol 68:991 [PMID: 21482915]
  90. Birks JS, Grimley EJ (2015) Rivastigmine for Alzheimer���s disease. Cochrane Database Syst Rev 4:001191
  91. Doody RS, Stevens JC, Beck C et al (2001) Practice parameter: management of dementia (an evidence-based review). Report of the quality standards subcommittee of the American Academy of Neurology. Neurology 56:1154 [PMID: 11342679]
  92. Raina P, Santaguida P, Ismaila A (2008) Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med 148:379 [PMID: 18316756]
  93. Tariot PN, Farlow MR, Grossberg GT et al (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317 [PMID: 14734594]
  94. Porsteinsson AP, Grossberg GT, Mintzer J (2008) Memantine treatment in patients with mild to moderate Alzheimer���s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res 5:83 [PMID: 18288936]
  95. Howard R, McShane R, Lindesay J et al (2012) Donepezil and memantine for moderate-to-severe Alzheimer���s disease. N Engl J Med 366:893 [PMID: 22397651]
  96. Basheer N, Smolek T, Hassan I, Liu F, Iqbal K, Zilka N, Novak P (2023) Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer���s disease? From preclinical studies to clinical trials. Mol Psychiatry 28:2197���2214 [PMID: 37264120]
  97. Esquer A, Blanc F, Collongues N (2023) Immunotherapies targeting amyloid and tau protein in Alzheimer���s disease: should we move away from diseases and focus on biological targets? A systematic review and expert opinion. Neurol Ther 12:1883���1907 [PMID: 37812325]
  98. Qu X, Yuan FN, Corona C, Pasini S, Pero ME, Gundersen GG et al (2017) Stabilization of dynamic microtubules by mDia1 drives tau-dependent A��1���42 synaptotoxicity. J Cell Biol 216(10):3161���3178. https://doi.org/10.1083/jcb.201701045 [DOI: 10.1083/jcb.201701045]
  99. Kima J, Lee Y, Lee S, Kim K, Song M, Lee J (2020) Mesenchymal stem cell therapy and Alzheimer���s disease: current status and future perspectives. J Alzheimers Dis 77:1���14 [DOI: 10.3233/JAD-200219]
  100. Ahmad F, Sachdeva P (2022) A consolidated review on stem cell therapy for treatment and management of Alzheimer���s disease. Aging Med (Milton) 5:182���190 [PMID: 36247342]
  101. Yao P, Zhou L, Zhu L, Zhou B, Yu Q (2020) Mesenchymal stem cells: a potential therapeutic strategy for neurodegenerative diseases. Eur Neurol 83:235���241. https://doi.org/10.1159/000509268 [DOI: 10.1159/000509268]
  102. Szeto JYY, Lewis SJ (2016) Current treatment options for Alzheimer���s disease and Parkinson���s disease dementia. Curr Neuropharmacol 14:326���338 [PMID: 26644155]
  103. Sugaya K, Vaidya M (2018) Stem cell therapies for neurodegenerative diseases. Adv Exp Med Biol 1056:61���84. https://doi.org/10.1007/978-3-319-74470-4_5 [DOI: 10.1007/978-3-319-74470-4_5]
  104. de Leeuw S, Tackenberg C (2019) Alzheimer���s in a dish - induced pluripotent stem cell-based disease modelling. Transl Neurodegener 8:21 [PMID: 31338163]
  105. Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA et al (2023) The future of precision medicine in the cure of Alzheimer���s disease. Biomedicines 11:335 [PMID: 36830872]
  106. Chenchula S, Atal S, Uppugunduri CRS (2024) A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: a reality for future health care. Pharmacogenomics J 24:9 [PMID: 38490995]
  107. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer���s disease. Mol Neurodegener 15:1���37 [DOI: 10.1186/s13024-020-00391-7]
  108. Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ et al (2021) Gut microbiota���driven brain A�� amyloidosis in mice requires microglia. J Exp Med 219:e20200895 [PMID: 34854884]
  109. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC et al (2017) Gut microbiome alterations in Alzheimer���s disease. Sci Rep 7(1):13537 [PMID: 29051531]
  110. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer���s disease. Sci Rep 6:30028 [PMID: 27443609]
  111. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L et al (2018) Gut microbiota is altered in patients with Alzheimer���s disease. J Alzheimer���s Dis 63:1337���1346 [DOI: 10.3233/JAD-180176]
  112. Qu Y, Zhuang L, Zhang H, Liu C, Wang X (2023) The effects of light therapy for depression in dementia: a systematic review and meta-analysis. J Alzheimers Dis 93:1223���1235. https://doi.org/10.3233/JAD-221204 [DOI: 10.3233/JAD-221204]
  113. Zang L, Liu X, Li Y, Liu J, Lu Q, Zhang Y, Meng Q (2023) The effect of light therapy on sleep disorders and psychobehavioral symptoms in patients with Alzheimer���s disease: a meta-analysis. PLoS ONE 18:e0293977 [PMID: 38055651]
  114. Li X, Chen L, Yu K (2023) Impact of twice-a-day transcranial direct current stimulation intervention on cognitive function and motor cortex plasticity in patients with Alzheimer���s disease. General Psychiatry 36:e101166. https://doi.org/10.1136/gpsych-2023-101166 [DOI: 10.1136/gpsych-2023-101166]
  115. Chen J, Wang Z, Chen Q, Fu Y, Zheng K (2022) Transcranial direct current stimulation enhances cognitive function in patients with mild cognitive impairment and early/mid Alzheimer���s disease: a systematic review and meta-analysis. Brain Sci 27(12):562 [DOI: 10.3390/brainsci12050562]
  116. Gomes MA, Akiba HT, Gomes JS, Trevizol AP, de Lacerda ALT, Dias ��M (2019) Transcranial direct current stimulation (tDCS) in elderly with mild cognitive impairment: a pilot study. Dement Neuropsychol 13:187���195 [PMID: 31285793]
  117. Jinnette R, Narita A, Manning B, McNaughton SA, Mathers JC, Livingstone KM (2021) Does Personalized Nutrition Advice Improve Dietary Intake in Healthy Adults? A Systematic Review of Randomized Controlled Trials. Adv Nutr. 12:657���69. https://doi.org/10.1093/advances/nmaa144 [DOI: 10.1093/advances/nmaa144]
  118. Yaffe K, Vittinghoff E, Dublin S, Peltz CB, Fleckenstein LE, Rosenberg DE et al (2023) Effect of personalized risk-reduction strategies on cognition and dementia risk profile among older adults: the SMARRT randomized clinical trial. JAMA Intern Med :e236279.
  119. Mez�� C, Dokalis N, Mossad O, Staszewski O, Neuber J, Yilmaz B (2020) Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer���s disease. Acta Neuropathol Commun 8:119 [PMID: 32727612]
  120. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802 [PMID: 28176819]
  121. Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S et al (2021) Microbiota-derived short-chain fatty acids modulate microglia and promote A�� plaque deposition. eLife 10:e59826 [PMID: 33845942]

MeSH Term

Alzheimer Disease
Humans
Animals
Neurobiology
Brain
Amyloid beta-Peptides

Chemicals

Amyloid beta-Peptides

Word Cloud

Created with Highcharts 10.0.0ADdiseaseproteinadvancementsAlzheimer'sneurobiologicalpotentiallyapproachesRecentgeneticmoleculardiverseprogressionAmyloid-betatanglestreatmentspathwayscognitiveA��recentyearssignificantmadeunderstandingclinicalperspectivesExploringcomplexsystemsunderlyingunveiledinsightsrevolutionizetherapeuticinvestigationshighlightedintricateinteractionsamongenvironmentalfactorsOptimismarisestreatmentoptionsslowinghaltingplaquestaucruciallyinfluenceonsetEmerginginvolvestrategiestargetingmultipleinvolvedpathogenesisinflammationoxidativestresssynapticdysfunctionClinicaltrialsusinghumanizedmonoclonalantibodiesfocusingimmunotherapieseliminatingamyloid-betashownpromiseNonpharmacologicalinterventionslighttherapyelectricalstimulationtrainingphysicalactivitydietarychangesdrawnattentionpotentialslowagingenhancebrainhealthPrecisionmedicineinvolvestailoringtherapiesindividualprofilesgainedtractionOngoingresearchinterdisciplinarycollaborationexpectedyieldeffectiveInsightsNeurobiologyDiseaseAdvancedTreatmentStrategiesAlzheimer���sAmyloidprecursorAPPprotofibrilsNeurofibrillaryNFTsTau

Similar Articles

Cited By