Terahertz spoof plasmonic neural network for diffractive information recognition and processing.

Xinxin Gao, Ze Gu, Qian Ma, Bao Jie Chen, Kam-Man Shum, Wen Yi Cui, Jian Wei You, Tie Jun Cui, Chi Hou Chan
Author Information
  1. Xinxin Gao: State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China. ORCID
  2. Ze Gu: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China.
  3. Qian Ma: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China. maqian@seu.edu.cn. ORCID
  4. Bao Jie Chen: State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China.
  5. Kam-Man Shum: State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China. ORCID
  6. Wen Yi Cui: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China. ORCID
  7. Jian Wei You: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China. ORCID
  8. Tie Jun Cui: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China. tjcui@seu.edu.cn. ORCID
  9. Chi Hou Chan: State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, China. eechic@cityu.edu.hk. ORCID

Abstract

All-optical diffractive neural networks, as analog artificial intelligence accelerators, leverage parallelism and analog computation for complex data processing. However, their low space transmission efficiency or large spatial dimensions hinder miniaturization and broader application. Here, we propose a terahertz spoof plasmonic neural network on a planar diffractive platform for direct multi-target recognition. Our approach employs a spoof surface plasmon polariton coupler array to construct a diffractive network layer, resulting in a compact, efficient, and easily integrable architecture. We designed three schemes: basis vector classification, multi-user recognition, and MNIST handwritten digit classification. Experimental results reveal that the terahertz spoof plasmonic neural network successfully classifies basis vectors, recognizes multi-user orientation information, and directly processes handwritten digits using a designed input framework comprising a metal grating array, transmitters, and receivers. This work broadens the application of terahertz plasmonic metamaterials, paving the way for terahertz on-chip integration, intelligent communication, and advanced computing systems.

References

  1. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012). [DOI: 10.1109/MSP.2012.2205597]
  2. Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photonics 17, 408–415 (2023). [DOI: 10.1038/s41566-023-01170-8]
  3. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). [DOI: 10.1038/s41586-020-2038-x]
  4. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022). [DOI: 10.1038/s41586-022-04714-0]
  5. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). [DOI: 10.1038/s41566-020-00754-y]
  6. Xing, L., et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
  7. Jingxi, L., et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 7, eabd7690 (2021).
  8. Rahman, M. S. S. & Ozcan, A. Time‐lapse image classification using a diffractive neural network. Adv. Intell. Syst. 5, https://doi.org/10.1002/aisy.202200387 (2023).
  9. Bai, B. et al. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl. 12, 69 (2023). [DOI: 10.1038/s41377-023-01116-3]
  10. Williamson, I. A. D. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–12 (2020). [DOI: 10.1109/JSTQE.2019.2930455]
  11. Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).
  12. Zheng, Z. et al. Dual adaptive training of photonic neural networks. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00723-4 (2023).
  13. Qian, C. et al. Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun. 13, 2694 (2022). [DOI: 10.1038/s41467-022-30377-6]
  14. Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021). [DOI: 10.1038/s41566-021-00796-w]
  15. Hughes, T. W., Minkov, M., Shi, Y. & Fan, S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, https://doi.org/10.1364/optica.5.000864 (2018).
  16. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). [DOI: 10.1038/nphoton.2017.93]
  17. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2020). [DOI: 10.1038/s41566-020-0685-y]
  18. Chen, Y. et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, https://doi.org/10.1126/sciadv.adf8437 (2023).
  19. Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022). [DOI: 10.1038/s41928-022-00719-9]
  20. Yan, T. et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019). [DOI: 10.1103/PhysRevLett.123.023901]
  21. Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023). [DOI: 10.1038/s41586-023-06558-8]
  22. Wang, Z., Chang, L., Wang, F., Li, T. & Gu, T. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022). [DOI: 10.1038/s41467-022-29856-7]
  23. Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023). [DOI: 10.1038/s41467-022-35772-7]
  24. Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). [DOI: 10.1038/s41586-020-2973-6]
  25. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020). [DOI: 10.1038/s41586-020-2764-0]
  26. Zhu, H. H. et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022). [DOI: 10.1038/s41467-022-28702-0]
  27. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). [DOI: 10.1038/nature01937]
  28. Pendry, J. B., Martín-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). [DOI: 10.1126/science.1098999]
  29. Shen, X., Cui, T. J., Martin-Cano, D. & Garcia-Vidal, F. J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl Acad. Sci. USA 110, 40–45 (2013). [DOI: 10.1073/pnas.1210417110]
  30. Zhang, J. et al. Integrated spoof plasmonic circuits. Sci. Bull. 64, 843–855 (2019). [DOI: 10.1016/j.scib.2019.01.022]
  31. Gao, X. et al. Programmable multifunctional device based on spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 68, 3770–3779 (2020). [DOI: 10.1109/TAP.2020.2969745]
  32. Zhang, H. C., Cui, T. J., Zhang, Q., Fan, Y. & Fu, X. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333–1340 (2015). [DOI: 10.1021/acsphotonics.5b00316]
  33. Gao, X. et al. Programmable surface plasmonic neural networks for microwave detection and processing. Nat. Electron. 6, 319–328 (2023). [DOI: 10.1038/s41928-023-00951-x]
  34. Joy, S. R., Erementchouk, M., Yu, H. & Mazumder, P. Spoof plasmon interconnects—communications beyond RC limit. IEEE Trans. Commun. 67, 599–610 (2019). [DOI: 10.1109/TCOMM.2018.2874242]
  35. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 7, 977–981 (2013). [DOI: 10.1038/nphoton.2013.275]
  36. Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020). [DOI: 10.1038/s41566-020-0618-9]
  37. Tripodi, L. et al. Broadband CMOS millimeter-wave frequency multiplier with Vivaldi antenna in 3-D chip-scale packaging. IEEE Trans. Microw. Theory Tech. 60, 3761–3768 (2012). [DOI: 10.1109/TMTT.2012.2220564]
  38. Park, J-D., Thyagarajan, S. V., Alon, E., Kang, S., & Niknejad, A. M. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. in Proc. 2012 Symposium on VLSI Circuits Digest of Technical Papers, 48–49 (2012).
  39. Zhou, T. et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res. 8, https://doi.org/10.1364/prj.389553 (2020).
  40. Ako, R. T., Upadhyay, A., Withayachumnankul, W., Bhaskaran, M. & Sriram, S. Dielectrics for terahertz metasurfaces: material selection and fabrication techniques. Adv. Opt. Mater. 8, https://doi.org/10.1002/adom.201900750 (2019).
  41. Fan, K. et al. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Phys. Rev. Lett. 110, 217404 (2013). [DOI: 10.1103/PhysRevLett.110.217404]
  42. Le Zhang, Q., Chen, B. J., Shum, K.-M. & Chan, C. H. Ultra-wideband and compact terahertz planar load based on spoof surface plasmon polaritons with nickel. IEEE Trans. Circuits Syst. II 68, 1922–1926 (2021).

Word Cloud

Created with Highcharts 10.0.0diffractiveneuralterahertzspoofplasmonicnetworkrecognitionanalogprocessingapplicationarraydesignedbasisclassificationmulti-userhandwritteninformationAll-opticalnetworksartificialintelligenceacceleratorsleverageparallelismcomputationcomplexdataHoweverlowspacetransmissionefficiencylargespatialdimensionshinderminiaturizationbroaderproposeplanarplatformdirectmulti-targetapproachemployssurfaceplasmonpolaritoncouplerconstructlayerresultingcompactefficienteasilyintegrablearchitecturethreeschemes:vectorMNISTdigitExperimentalresultsrevealsuccessfullyclassifiesvectorsrecognizesorientationdirectlyprocessesdigitsusinginputframeworkcomprisingmetalgratingtransmittersreceiversworkbroadensmetamaterialspavingwayon-chipintegrationintelligentcommunicationadvancedcomputingsystemsTerahertz

Similar Articles

Cited By