Hypersensitivity to man-made electromagnetic fields (EHS) correlates with immune responsivity to oxidative stress: a case report.

Thawatchai Thoradit, Marthe Chabi, Blanche Aguida, Soria Baouz, Verene Stierle, Marootpong Pooam, Stephane Tousaints, Casimir D Akpovi, Margaret Ahmad
Author Information
  1. Thawatchai Thoradit: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France.
  2. Marthe Chabi: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France.
  3. Blanche Aguida: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France.
  4. Soria Baouz: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France.
  5. Verene Stierle: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France.
  6. Marootpong Pooam: Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.
  7. Stephane Tousaints: Cabinet Medicale, France.
  8. Casimir D Akpovi: Non-Communicable Diseases and Cancer Research Unit (UR-MNTC), University of Abomey-Calavi, Cotonou, Benin.
  9. Margaret Ahmad: UMR8256, CNRS, IBPS, Sorbonne Université, Paris, France. ORCID

Abstract

There is increasing evidence that exposure to weak electromagnetic fields (EMFs) generated by modern telecommunications or household appliances has physiological consequences, including reports of electromagnetic field hypersensitivity (EHS) leading to adverse health effects. Although symptoms can be serious, no underlying mechanism for EHS is known and there is no general cure or effective therapy. Here, we present the case study of a self-reported EHS patient whose symptoms include severe headaches, generalized fatigue, cardiac arrhythmia, attention and memory deficit, and generalized systemic pain within minutes of exposure to telecommunications (Wifi, cellular phones), high tension lines and electronic devices. Tests for cerebral, cardiovascular, and other physiological anomalies proved negative, as did serological tests for inflammation, allergies, infections, auto-immune conditions, and hormonal imbalance. However, further investigation revealed deficits in cellular anti-oxidants and increased radical scavenging enzymes, indicative of systemic oxidative stress. Significantly, there was a large increase in circulating antibodies for oxidized Low-Density Lipoprotein (LDLox), byproducts of oxidative stress accumulating in membranes of vascular cells. Because a known primary effect of EMF exposure is to increase the concentration of cellular oxidants, we propose that pathology in this patient may be causally related to a resulting increase in LDLox synthesis. This in turn could trigger an exaggerated auto-immune response consistent with EHS symptoms. This case report thereby provides a testable mechanistic framework for EHS pathology with therapeutic implications for this debilitating and poorly understood condition.

Keywords

References

  1. Ann N Y Acad Sci. 2021 Sep;1499(1):82-103 [PMID: 33945157]
  2. Commun Integr Biol. 2021 Sep 15;14(1):200-211 [PMID: 34552685]
  3. Biomolecules. 2023 Jul 13;13(7): [PMID: 37509147]
  4. Front Public Health. 2022 Sep 15;10:994758 [PMID: 36187692]
  5. Mediators Inflamm. 2014;2014:924184 [PMID: 24812443]
  6. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  7. Rev Environ Health. 2016 Sep 1;31(3):363-97 [PMID: 27454111]
  8. Electromagn Biol Med. 2019;38(4):231-248 [PMID: 31450976]
  9. Environ Health. 2020 May 6;19(1):48 [PMID: 32375774]
  10. Antioxidants (Basel). 2022 Nov 24;11(12): [PMID: 36552530]
  11. Environ Res. 2019 Sep;176:108517 [PMID: 31202043]
  12. Environ Res. 2024 Apr 1;246:118124 [PMID: 38199478]
  13. Health Phys. 2019 Jun;116(6):776-788 [PMID: 30883437]
  14. Biomed Pharmacother. 2019 May;113:108642 [PMID: 30849640]
  15. Sci Rep. 2016 Dec 20;6:38543 [PMID: 27995996]
  16. Rev Environ Health. 2021 Jul 06;37(3):423-450 [PMID: 34229366]
  17. Int J Biochem Cell Biol. 2007;39(1):44-84 [PMID: 16978905]
  18. Environ Res. 2018 Jul;164:405-416 [PMID: 29573716]
  19. Antioxidants (Basel). 2023 Oct 02;12(10): [PMID: 37891903]
  20. PLoS One. 2020 Dec 3;15(12):e0243038 [PMID: 33270696]
  21. Environ Res. 2022 Sep;212(Pt A):113374 [PMID: 35537497]
  22. Environ Res. 2023 Feb 1;218:114979 [PMID: 36460078]
  23. Environ Res. 2022 Mar;204(Pt C):112341 [PMID: 34740620]
  24. Free Radic Biol Med. 2010 Feb 15;48(4):579-89 [PMID: 20005945]
  25. PLoS Biol. 2018 Oct 2;16(10):e2006229 [PMID: 30278045]
  26. Res Pharm Sci. 2010 Jan;5(1):1-8 [PMID: 21589762]
  27. Commun Integr Biol. 2022 Feb 3;15(1):54-66 [PMID: 35126804]
  28. Int J Mol Sci. 2023 Nov 17;24(22): [PMID: 38003643]
  29. Redox Biol. 2015 Dec;6:260-271 [PMID: 26296072]
  30. Sci Rep. 2019 Nov 7;9(1):16182 [PMID: 31700008]
  31. Redox Biol. 2015;4:180-3 [PMID: 25588755]
  32. AIMS Biophys. 2017;4(3):337-361 [PMID: 28748217]