Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data.

Xiuying Liu, Xianwen Ren
Author Information
  1. Xiuying Liu: Changping Laboratory, Beijing 102206, China. ORCID
  2. Xianwen Ren: Changping Laboratory, Beijing 102206, China. ORCID

Abstract

Spatial transcriptomics technology has been an essential and powerful method for delineating tissue architecture at the molecular level. However, due to the limitations of the current spatial techniques, the cellular information cannot be directly measured but instead spatial spots typically varying from a diameter of 0.2 to 100 µm are characterized. Therefore, it is vital to apply computational strategies for inferring the cellular composition within each spatial spot. The main objective of this review is to summarize the most recent progresses in estimating the exact cellular proportions for each spatial spot, and to prospect the future directions of this field.

Keywords

References

  1. Science. 2019 Mar 29;363(6434):1463-1467 [PMID: 30923225]
  2. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  3. Nat Biotechnol. 2022 May;40(5):661-671 [PMID: 35027729]
  4. Nucleic Acids Res. 2022 Jun 10;50(10):e57 [PMID: 35191503]
  5. Nat Methods. 2021 Nov;18(11):1352-1362 [PMID: 34711971]
  6. Nat Methods. 2018 May;15(5):339-342 [PMID: 29553578]
  7. Nat Methods. 2021 Jan;18(1):100-106 [PMID: 33318659]
  8. Nat Biotechnol. 2022 Sep;40(9):1360-1369 [PMID: 35449415]
  9. Genome Biol. 2023 May 17;24(1):120 [PMID: 37198601]
  10. Curr Opin Biotechnol. 2019 Aug;58:129-136 [PMID: 30978643]
  11. Eur J Immunol. 2016 Nov;46(11):2496-2506 [PMID: 27682842]
  12. Nucleic Acids Res. 2023 Jan 6;51(D1):D870-D876 [PMID: 36300619]
  13. Biophys Rev (Melville). 2023 Feb 07;4(1):011306 [PMID: 38505815]
  14. Cell. 2020 Dec 10;183(6):1665-1681.e18 [PMID: 33188776]
  15. Nucleic Acids Res. 2021 May 21;49(9):e50 [PMID: 33544846]
  16. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35753702]
  17. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36410733]
  18. Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2309227120 [PMID: 37963245]
  19. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  20. Nat Rev Genet. 2021 Oct;22(10):627-644 [PMID: 34145435]
  21. Nature. 2024 Jan;625(7993):101-109 [PMID: 38093010]
  22. Commun Biol. 2020 Oct 9;3(1):565 [PMID: 33037292]
  23. Cell Res. 2020 Sep;30(9):763-778 [PMID: 32541867]
  24. Nat Methods. 2021 Nov;18(11):1282-1283 [PMID: 34711969]
  25. Nat Biotechnol. 2022 Sep;40(9):1349-1359 [PMID: 35501392]
  26. Comput Struct Biotechnol J. 2022 Sep 01;20:4870-4884 [PMID: 36147664]
  27. Cell. 2018 Nov 1;175(4):1156-1167.e15 [PMID: 30270040]
  28. Nat Commun. 2022 Apr 29;13(1):2339 [PMID: 35487922]
  29. Genome Biol. 2020 Jun 2;21(1):130 [PMID: 32487174]
  30. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  31. Cell Rep. 2019 Oct 1;29(1):202-211.e6 [PMID: 31577949]
  32. Nat Protoc. 2021 Sep;16(9):4177-4200 [PMID: 34349282]
  33. Nat Commun. 2020 Aug 27;11(1):4307 [PMID: 32855414]
  34. Nat Methods. 2022 Jun;19(6):662-670 [PMID: 35577954]
  35. Nature. 2019 Dec;576(7785):132-137 [PMID: 31748748]
  36. Nat Commun. 2023 Dec 1;14(1):7930 [PMID: 38040768]
  37. Nat Commun. 2023 Nov 29;14(1):7848 [PMID: 38030617]
  38. Nucleic Acids Res. 2022 Apr 22;50(7):e42 [PMID: 35253896]
  39. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33480403]
  40. Nat Biotechnol. 2022 Mar;40(3):345-354 [PMID: 34650268]
  41. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  42. Nat Biotechnol. 2022 Aug;40(8):1190-1199 [PMID: 35314812]
  43. Front Genet. 2022 Jan 27;12:785290 [PMID: 35154244]
  44. Genome Res. 2021 Oct;31(10):1706-1718 [PMID: 34599004]
  45. Nat Biotechnol. 2022 Apr;40(4):517-526 [PMID: 33603203]
  46. Nat Commun. 2023 Mar 21;14(1):1548 [PMID: 36941264]
  47. Genome Biol. 2022 Mar 25;23(1):83 [PMID: 35337374]
  48. J Genet Genomics. 2023 Sep;50(9):625-640 [PMID: 36990426]
  49. Nat Methods. 2019 Oct;16(10):987-990 [PMID: 31501547]
  50. Genome Biol. 2021 May 10;22(1):145 [PMID: 33971932]
  51. Nat Biotechnol. 2023 Nov;41(11):1543-1548 [PMID: 36879008]

MeSH Term

Humans
Algorithms
Transcriptome
Gene Expression Profiling
Computational Biology
Animals

Word Cloud

Created with Highcharts 10.0.0spatialSpatialcellulartranscriptomicsspottechnologyessentialpowerfulmethoddelineatingtissuearchitecturemolecularlevelHoweverduelimitationscurrenttechniquesinformationdirectlymeasuredinsteadspotstypicallyvaryingdiameter02100µmcharacterizedThereforevitalapplycomputationalstrategiesinferringcompositionwithinmainobjectivereviewsummarizerecentprogressesestimatingexactproportionsprospectfuturedirectionsfieldComputationalStrategiesAlgorithmsInferringCellularCompositionTranscriptomicsDataCelltypedecompositionCellular compositionSingle-cellsequencingSpotdeconvolution

Similar Articles

Cited By