Single-cell transcriptome profiles the heterogeneity of tumor cells and microenvironments for different pathological endometrial cancer and identifies specific sensitive drugs.

Fang Ren, Lingfang Wang, Yuyouye Wang, Jiaxuan Wang, Yuanpei Wang, Xiaole Song, Gong Zhang, Fangfang Nie, Shitong Lin
Author Information
  1. Fang Ren: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. renfang@foxmail.com. ORCID
  2. Lingfang Wang: Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
  3. Yuyouye Wang: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  4. Jiaxuan Wang: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  5. Yuanpei Wang: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  6. Xiaole Song: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  7. Gong Zhang: Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  8. Fangfang Nie: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
  9. Shitong Lin: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. 1131108208@qq.com.

Abstract

Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8 Tcyto and NK cells were prominent in normal endometrium, whereas CD4 Treg, CD4 Tex, and CD8 Tex cells dominated the tumors. CXCL3 macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2 inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2 iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.

References

  1. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  2. J Clin Oncol. 2020 Jan 1;38(1):1-10 [PMID: 31682550]
  3. J Natl Compr Canc Netw. 2023 Feb;21(2):181-209 [PMID: 36791750]
  4. J Transl Med. 2023 Jun 23;21(1):408 [PMID: 37353806]
  5. Nat Commun. 2020 Oct 8;11(1):5077 [PMID: 33033240]
  6. Front Endocrinol (Lausanne). 2021 Oct 14;12:744868 [PMID: 34721299]
  7. JAMA. 2021 Jun 1;325(21):2143 [PMID: 34061156]
  8. Cell Prolif. 2022 Jun;55(6):e13249 [PMID: 35560676]
  9. Nat Commun. 2022 Apr 1;13(1):1742 [PMID: 35365629]
  10. Am J Pathol. 2015 Apr;185(4):1104-13 [PMID: 25698082]
  11. Gynecol Oncol. 2021 Jul;162(1):226-234 [PMID: 33934848]
  12. Nat Med. 2021 Feb;27(2):212-224 [PMID: 33574607]
  13. Nature. 2019 Jul;571(7766):570-575 [PMID: 31243362]
  14. Cancer Commun (Lond). 2023 Jun;43(6):685-705 [PMID: 37256823]
  15. Oncogene. 2023 Jan;42(2):99-112 [PMID: 36376513]
  16. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  17. Nat Commun. 2023 Aug 18;14(1):5029 [PMID: 37596273]
  18. Signal Transduct Target Ther. 2021 Feb 20;6(1):72 [PMID: 33608497]
  19. Cancer Cell. 2017 Mar 13;31(3):411-423 [PMID: 28292439]
  20. Cell. 2021 Feb 4;184(3):792-809.e23 [PMID: 33545035]
  21. Lancet. 2016 Mar 12;387(10023):1094-1108 [PMID: 26354523]
  22. J Hepatol. 2020 Nov;73(5):1118-1130 [PMID: 32505533]
  23. EBioMedicine. 2023 Jun;92:104595 [PMID: 37146405]
  24. Semin Cancer Biol. 2022 Dec;87:17-31 [PMID: 36354098]
  25. Cell. 1999 Mar 19;96(6):807-18 [PMID: 10102269]
  26. Cell. 2018 Nov 1;175(4):984-997.e24 [PMID: 30388455]
  27. Gynecol Oncol. 2017 Feb;144(2):243-249 [PMID: 27993480]
  28. Nature. 2023 Aug;620(7973):409-416 [PMID: 37532934]
  29. Adv Sci (Weinh). 2023 Oct;10(28):e2206692 [PMID: 37587835]
  30. Genome Med. 2021 Dec 16;13(1):187 [PMID: 34911571]
  31. Oncoimmunology. 2022 Jan 3;11(1):2020984 [PMID: 35003899]
  32. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  33. Cancer Discov. 2019 Aug;9(8):1102-1123 [PMID: 31197017]
  34. Blood. 2003 Jun 1;101(11):4492-9 [PMID: 12576331]
  35. Theranostics. 2022 Mar 28;12(7):3104-3130 [PMID: 35547750]
  36. EBioMedicine. 2023 Nov;97:104846 [PMID: 37879219]
  37. Discov Oncol. 2023 Nov 23;14(1):211 [PMID: 37994955]
  38. Nat Rev Clin Oncol. 2022 Dec;19(12):775-790 [PMID: 36216928]
  39. Nat Commun. 2022 Oct 22;13(1):6300 [PMID: 36273006]
  40. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  41. Nat Cancer. 2022 Sep;3(9):1123-1136 [PMID: 36138134]
  42. N Engl J Med. 2022 Feb 3;386(5):437-448 [PMID: 35045221]
  43. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  44. Nat Commun. 2023 Jul 18;14(1):4294 [PMID: 37463917]
  45. Adv Mater. 2023 Sep;35(36):e2301257 [PMID: 37262365]
  46. Gynecol Oncol. 2003 Dec;91(3):463-9 [PMID: 14675663]
  47. Nature. 2019 Jul;571(7765):398-402 [PMID: 31292548]
  48. Nat Rev Cancer. 2019 Sep;19(9):510-521 [PMID: 31388127]
  49. Cancer Cell Int. 2020 Jul 20;20:329 [PMID: 32699528]
  50. Immunity. 2021 Oct 12;54(10):2245-2255.e4 [PMID: 34464595]
  51. Science. 2021 Dec 17;374(6574):abe6474 [PMID: 34914499]
  52. Cell. 2020 Feb 20;180(4):729-748.e26 [PMID: 32059776]
  53. Gynecol Oncol Rep. 2019 Feb 21;28:54-57 [PMID: 30906838]
  54. Cancer Discov. 2021 Jan;11(1):34-44 [PMID: 33277307]
  55. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4834-9 [PMID: 19261849]
  56. Int J Mol Sci. 2018 Aug 13;19(8): [PMID: 30104481]
  57. Cell. 2021 Apr 15;184(8):2239-2254.e39 [PMID: 33831375]
  58. Nat Rev Clin Oncol. 2021 Dec;18(12):792-804 [PMID: 34489603]
  59. Oncogene. 2019 May;38(20):3812-3823 [PMID: 30670778]
  60. J Pathol Clin Res. 2015 Apr 09;1(3):173-85 [PMID: 27499902]
  61. PLoS One. 2023 Mar 16;18(3):e0278757 [PMID: 36928660]
  62. Cells. 2020 May 26;9(6): [PMID: 32466488]
  63. J Hepatol. 2019 Oct;71(4):731-741 [PMID: 31173813]
  64. Chin Med J (Engl). 2022 Feb 9;135(5):584-590 [PMID: 35143424]
  65. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  66. Cell. 2020 Apr 16;181(2):442-459.e29 [PMID: 32302573]
  67. Mol Cancer. 2021 Oct 11;20(1):131 [PMID: 34635121]
  68. Nature. 2019 Jul;571(7764):211-218 [PMID: 31207603]
  69. Mol Cell. 2021 Dec 2;81(23):4924-4941.e10 [PMID: 34739872]
  70. World J Surg Oncol. 2023 Nov 21;21(1):357 [PMID: 37986077]
  71. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  72. Nat Immunol. 2019 Dec;20(12):1584-1593 [PMID: 31745336]
  73. Sci Rep. 2023 Sep 30;13(1):16468 [PMID: 37777573]
  74. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  75. Int J Mol Med. 2020 May;45(5):1417-1424 [PMID: 32323730]
  76. Arterioscler Thromb Vasc Biol. 2016 Jan;36(1):122-33 [PMID: 26564819]
  77. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  78. Cell Discov. 2022 Oct 5;8(1):101 [PMID: 36198671]
  79. J Immunother Cancer. 2022 May;10(5): [PMID: 35623659]
  80. J Cell Mol Med. 2020 Jul;24(14):7767-7777 [PMID: 32424934]
  81. Front Oncol. 2022 Nov 30;12:1001693 [PMID: 36531027]
  82. Oncotarget. 2018 Aug 10;9(62):31985-31998 [PMID: 30174791]
  83. Nat Rev Cancer. 2023 Aug;23(8):544-564 [PMID: 37349410]
  84. Can J Physiol Pharmacol. 2006 Jan;84(1):77-92 [PMID: 16845893]
  85. Sci Signal. 2015 Jan 20;8(360):ra6 [PMID: 25605972]

MeSH Term

Humans
Female
Endometrial Neoplasms
Tumor Microenvironment
Transcriptome
Single-Cell Analysis
Gene Expression Regulation, Neoplastic

Word Cloud

Created with Highcharts 10.0.0cellspathologicalcancerECheterogeneitycarcinomasUCCCvariedtumorTMEtypesspecificCanceruterineendometrialEEC-IrespectivelyalsodrugsCD8CD4TextumorsSOD2iCAFsEndometrialhighlyheterogeneousmalignancycharacterizedpathologyprognosesmicroenvironmentremainspoorlyunderstoodconductedsingle-cellRNAsequencingscRNA-seq18samplesencompassingvariousdelineateuniquetranscriptionallandscapesdiversesourcesdisplayeddistincthallmarkslabeledimmune-modulatingproliferation-modulatingmetabolism-modulatingclearcellwell-differentiatedendometrioidserousUSCexhibitedgreatestidentifiedpotentialeffectiveconfirmedeffectivenessusingpatient-derivedorganoidsgroupRegardingobservedprognosticallyfavorableTcytoNKprominentnormalendometriumwhereasTregdominatedCXCL3macrophagesassociatedM2signatureangiogenesisexclusivelyfoundPrognosticallyrelevantepithelium-specificcancer-associatedfibroblastseCAFsinflammatoryCAFspredominatedgroupsvalidatedoncogeniceffectsvitrocomprehensivestudyyieldeddeeperinsightspathogenesispotentiallyfacilitatingpersonalizedtreatmentsSingle-celltranscriptomeprofilesmicroenvironmentsdifferentidentifiessensitive

Similar Articles

Cited By