MnoSR removal in triggers broad transcriptional response to 1,3-propanediol and glucose as sole carbon sources.

Renata P��oci��ska, Katarzyna Stru��, Ma��gorzata Korycka-Macha��a, Przemys��aw P��oci��ski, Magdalena Kuzio��a, Anna ��aczek, Marcin S��omka, Jaros��aw Dziadek
Author Information
  1. Renata P��oci��ska: Institute of Medical Biology of the Polish Academy of Sciences, ����d��, Poland.
  2. Katarzyna Stru��: Institute of Medical Biology of the Polish Academy of Sciences, ����d��, Poland.
  3. Ma��gorzata Korycka-Macha��a: Institute of Medical Biology of the Polish Academy of Sciences, ����d��, Poland.
  4. Przemys��aw P��oci��ski: Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of ����dz, ����d��, Poland.
  5. Magdalena Kuzio��a: Institute of Medical Biology of the Polish Academy of Sciences, ����d��, Poland.
  6. Anna ��aczek: Department of Microbiology, College of Medical Sciences, University of Rzesz��w, Rzesz��w, Poland.
  7. Marcin S��omka: Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of ����d��, ����d��, Poland.
  8. Jaros��aw Dziadek: Institute of Medical Biology of the Polish Academy of Sciences, ����d��, Poland.

Abstract

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis.
Methods: Mycobacterium smegmatis mutant strains ��mnoS, ��mnoR and ��mnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis.
Results and discussion: The ���mnoS, ���mnoR, and ���mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.

Keywords

References

  1. J Bacteriol. 2001 Jan;183(2):664-70 [PMID: 11133961]
  2. Front Microbiol. 2020 Nov 11;11:588487 [PMID: 33304334]
  3. IUBMB Life. 2016 Aug;68(8):621-8 [PMID: 27321674]
  4. Appl Microbiol Biotechnol. 2002 Mar;58(3):275-85 [PMID: 11935176]
  5. Int J Mol Sci. 2022 Jul 12;23(14): [PMID: 35887019]
  6. Microbiologyopen. 2015 Dec;4(6):896-916 [PMID: 26434659]
  7. BMC Microbiol. 2014 Nov 18;14:276 [PMID: 25403821]
  8. J Bacteriol. 2008 Jun;190(11):3886-95 [PMID: 18375549]
  9. Exp Biol Med (Maywood). 2018 Jan;243(2):148-158 [PMID: 29216732]
  10. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  11. Curr Microbiol. 2013 Feb;66(2):122-31 [PMID: 23064972]
  12. Eur J Biochem. 1993 Mar 15;212(3):819-26 [PMID: 8385013]
  13. J Bacteriol. 2011 Dec;193(24):6960-72 [PMID: 21984794]
  14. DNA Cell Biol. 2022 Dec;41(12):1063-1074 [PMID: 36394437]
  15. Bioinformatics. 2011 Apr 1;27(7):1017-8 [PMID: 21330290]
  16. Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2302006120 [PMID: 37216503]
  17. Nucleic Acids Res. 2019 Jun 20;47(11):5892-5905 [PMID: 30957850]
  18. J Bacteriol. 2007 May;189(9):3655-9 [PMID: 17307844]
  19. Nucleic Acids Res. 2013 Apr 1;41(6):3491-503 [PMID: 23396277]
  20. BMC Genomics. 2016 Oct 26;17(1):837 [PMID: 27784279]
  21. Microbiology (Reading). 2010 Feb;156(Pt 2):463-471 [PMID: 19875438]
  22. Mol Microbiol. 2012 Sep;85(6):1148-65 [PMID: 22780904]
  23. J Bacteriol. 1993 Mar;175(6):1814-22 [PMID: 8449887]
  24. Biochem Cell Biol. 2015 Jun;93(3):236-40 [PMID: 25707819]
  25. Appl Environ Microbiol. 2019 Jun 17;85(13): [PMID: 31003982]
  26. Comput Struct Biotechnol J. 2021 Jun 04;19:3491-3506 [PMID: 34194673]
  27. J Bacteriol. 2018 Aug 10;200(17): [PMID: 29891642]
  28. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  29. J Bacteriol. 2012 Aug;194(15):4003-14 [PMID: 22636779]
  30. Bioinformatics. 2020 Apr 15;36(8):2628-2629 [PMID: 31882993]
  31. Front Cell Infect Microbiol. 2022 Jun 28;12:909507 [PMID: 35837472]
  32. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  33. J Bacteriol. 2003 Jan;185(1):142-7 [PMID: 12486050]
  34. Subcell Biochem. 2000;35:73-117 [PMID: 11192736]
  35. Microbiology (Reading). 2000 Aug;146 ( Pt 8):1969-1975 [PMID: 10931901]
  36. Gene. 2013 Dec 1;531(2):306-17 [PMID: 24055419]
  37. Sci Rep. 2018 Dec 3;8(1):17552 [PMID: 30510199]
  38. Nucleic Acids Res. 2011 Sep 1;39(17):7400-14 [PMID: 21653552]
  39. Curr Opin Microbiol. 2000 Apr;3(2):165-70 [PMID: 10745001]
  40. J Biol Chem. 2012 Jul 6;287(28):24053-63 [PMID: 22544737]
  41. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  42. FEMS Microbiol Lett. 1998 Mar 1;160(1):119-24 [PMID: 9495022]
  43. J Bacteriol. 2021 Mar 8;203(7): [PMID: 33468593]
  44. Biotechnology. 1991;18:79-109 [PMID: 1909921]

MeSH Term

Mycobacterium smegmatis
Gene Expression Regulation, Bacterial
Glucose
Propylene Glycols
Bacterial Proteins
Carbon
Promoter Regions, Genetic

Chemicals

Glucose
Propylene Glycols
Bacterial Proteins
1,3-propanediol
Carbon

Word Cloud

Created with Highcharts 10.0.0MnoSRcarbonsmegmatisMnoRanalysissources13-propanediolmycobacteriaroleenvironmentalconditionsmethylotrophicmetabolismMmutantstrainsgenesgeneratedglobalRNAsequencingEMSAthermophoresisculturedpresenceconfirmedglucosesolemetabolictranscriptionalresponseIntroduction:two-componentsignaltransductionsystemsplayessentialadaptationbacteriachangingOnesysteminvolvedregulationMethods:Mycobacterium��mnoS��mnoR��mnoS/RlackingfunctionalmnoSmnoRusinghomologousrecombinationapproachrecombinantproteinpurifiedaffinitycolumnchromatographypresentstudyemploysmolecularbiologytechniques:cloningstrategiesqRT-PCRMicroscalebioinformaticsResultsdiscussion:���mnoS���mnoR���mnoS/RdefinedGrowthcurveinactivationimpairsabilitycellsusealcoholsethanolimprovesbacterialgrowthethyleneglycolxylitolglyceroltotalmethodemployedunderstandimportanceresponseslimitedaccesscarbon-richlosssignificantlyaffectedutilizationcaseinfluencedexpressionmultiplepathwaysnumerouschangeslinkedevidentDNA-bindingsiteswithinpromotorregionsoutsidemnooperonmicroscalemutatedbindingconsensusregioncomprehensivehighlightssystem'svitaladaptabilityprovidinginsightspotentialimpactsurvivalremovaltriggersbroadRNA-SeqhistidinesensorkinaseMnoSmycobacteriumregulator

Similar Articles

Cited By