Machine learning-based derivation and validation of three immune phenotypes for risk stratification and prognosis in community-acquired pneumonia: a retrospective cohort study.

Qiangqiang Qin, Haiyang Yu, Jie Zhao, Xue Xu, Qingxuan Li, Wen Gu, Xuejun Guo
Author Information
  1. Qiangqiang Qin: Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  2. Haiyang Yu: Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  3. Jie Zhao: Department of Hematology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  4. Xue Xu: Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  5. Qingxuan Li: Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
  6. Wen Gu: Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  7. Xuejun Guo: Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Abstract

Background: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP patients is limited, with few machine learning (ML) models analyzing immune indicators.
Methods: A retrospective cohort study was conducted at Xinhua Hospital, affiliated with Shanghai Jiaotong University. Patients meeting predefined criteria were included and unsupervised clustering was used to identify phenotypes. Patients with distinct phenotypes were also compared in different outcomes. By machine learning methods, we comprehensively assess the disease severity of CAP patients.
Results: A total of 1156 CAP patients were included in this research. In the training cohort (n=809), we identified three immune phenotypes among patients: Phenotype A (42.0%), Phenotype B (40.2%), and Phenotype C (17.8%), with Phenotype C corresponding to more severe disease. Similar results can be observed in the validation cohort. The optimal prognostic model, SuperPC, achieved the highest average C-index of 0.859. For predicting CAP severity, the random forest model was highly accurate, with C-index of 0.998 and 0.794 in training and validation cohorts, respectively.
Conclusion: CAP patients can be categorized into three distinct immune phenotypes, each with prognostic relevance. Machine learning exhibits potential in predicting mortality and disease severity in CAP patients by leveraging clinical immunological data. Further external validation studies are crucial to confirm applicability.

Keywords

References

  1. Crit Care. 2016 Aug 28;20:237 [PMID: 27567896]
  2. Respir Med. 2023 Oct;217:107363 [PMID: 37451647]
  3. J Transl Med. 2023 Jul 13;21(1):466 [PMID: 37443022]
  4. J Immunol Res. 2021 Jun 09;2021:6657894 [PMID: 34150910]
  5. Immun Inflamm Dis. 2023 Sep;11(9):e1009 [PMID: 37773700]
  6. Clin Respir J. 2023 Jul;17(7):618-628 [PMID: 37279744]
  7. Chest. 2020 Jan;157(1):34-41 [PMID: 31610158]
  8. Ann Intensive Care. 2022 Oct 20;12(1):99 [PMID: 36264358]
  9. J Infect. 2016 Mar;72(3):273-82 [PMID: 26777314]
  10. Arch Med Res. 2021 May;52(4):443-449 [PMID: 33380361]
  11. Exp Cell Res. 2017 Dec 1;361(1):56-62 [PMID: 28986067]
  12. EBioMedicine. 2017 Oct;24:231-236 [PMID: 28958655]
  13. Arch Med Res. 2020 Jul;51(5):429-435 [PMID: 32402575]
  14. Crit Care. 2023 Oct 24;27(1):406 [PMID: 37875995]
  15. Clin Microbiol Infect. 2009 Sep;15(9):858-64 [PMID: 19702590]
  16. Nat Commun. 2022 Feb 17;13(1):915 [PMID: 35177626]
  17. Nat Med. 2023 Jan;29(1):226-235 [PMID: 36456834]
  18. Chest. 2023 Jan;163(1):77-88 [PMID: 35850287]
  19. Ann Transl Med. 2016 Jan;4(2):30 [PMID: 26889483]
  20. Cell. 2021 Feb 18;184(4):861-880 [PMID: 33497610]
  21. Clin Immunol. 2023 Apr;249:109289 [PMID: 36918041]
  22. JAMA Intern Med. 2020 Aug 1;180(8):1081-1089 [PMID: 32396163]
  23. PLoS One. 2016 May 13;11(5):e0155648 [PMID: 27175511]
  24. Singapore Med J. 2018 Apr;59(4):190-198 [PMID: 28805234]
  25. Eur Radiol. 2023 Mar;33(3):1906-1917 [PMID: 36355199]
  26. Respir Res. 2014 Mar 04;15:27 [PMID: 24593040]
  27. Nat Commun. 2022 Feb 10;13(1):816 [PMID: 35145098]
  28. Lancet Respir Med. 2014 Aug;2(8):611-20 [PMID: 24853585]
  29. Front Cell Infect Microbiol. 2022 Apr 19;12:838749 [PMID: 35521216]
  30. Biomedicines. 2023 Feb 01;11(2): [PMID: 36830965]
  31. Sci Rep. 2023 Jul 17;13(1):11527 [PMID: 37460837]
  32. JAMA. 2019 May 28;321(20):2003-2017 [PMID: 31104070]
  33. JMIR Public Health Surveill. 2023 Jan 25;9:e41162 [PMID: 36696166]
  34. J Gen Intern Med. 2021 May;36(5):1338-1345 [PMID: 33575909]
  35. Radiology. 2023 Apr;307(2):e221693 [PMID: 36786701]
  36. Intensive Care Med. 2019 Feb;45(2):159-171 [PMID: 30706119]
  37. Crit Care. 2023 Nov 2;27(1):424 [PMID: 37919787]
  38. Crit Care. 2023 Jul 20;27(1):292 [PMID: 37474944]
  39. Front Bioeng Biotechnol. 2022 Jun 29;10:903426 [PMID: 35845426]
  40. J Infect. 2019 Jun;78(6):423-431 [PMID: 30965065]
  41. Apoptosis. 2023 Oct;28(9-10):1406-1421 [PMID: 37462883]

MeSH Term

Humans
Community-Acquired Infections
Retrospective Studies
Machine Learning
Male
Female
Middle Aged
Prognosis
Pneumonia
Aged
Phenotype
Risk Assessment
Severity of Illness Index
Adult
Immunophenotyping

Word Cloud

Created with Highcharts 10.0.0CAPpatientsimmunephenotypeslearningcohortPhenotypevalidationmachinediseaseseveritythree0clinicalpneumoniaexhibitsresearchretrospectivestudyPatientsincludedunsupervisedclusteringdistincttrainingCcanprognosticmodelC-indexpredictingMachineriskstratificationcommunity-acquiredBackground:presentationCommunity-acquiredhospitalizedheterogeneityInflammationresponsesplaysignificantrolesdevelopmentHoweverimmunophenotypeslimitedMLmodelsanalyzingindicatorsMethods:conductedXinhuaHospitalaffiliatedShanghaiJiaotongUniversitymeetingpredefinedcriteriausedidentifyalsocompareddifferentoutcomesmethodscomprehensivelyassessResults:total1156n=809identifiedamongpatients:420%B402%178%correspondingsevereSimilarresultsobservedoptimalSuperPCachievedhighestaverage859randomforesthighlyaccurate998794cohortsrespectivelyConclusion:categorizedrelevancepotentialmortalityleveragingimmunologicaldataexternalstudiescrucialconfirmapplicabilitylearning-basedderivationprognosispneumonia:phenotype

Similar Articles

Cited By