Introducing PLEMS: the application of a low-cost, portable monitoring system in environmental walks.

Eduardo Krüger, Walter Ihlenfeld, Ivan Callejas, Solange Leder
Author Information
  1. Eduardo Krüger: Departamento de Construção Civil, Universidade Tecnológica Federal do Paraná - UTFPR /Campus Curitiba - Sede Ecoville, Rua Deputado Heitor Alencar Furtado, 4900, 81280-340, Curitiba, Brazil. ekruger@utfpr.edu.br. ORCID
  2. Walter Ihlenfeld: Departamento de Construção Civil, Universidade Tecnológica Federal do Paraná - UTFPR /Campus Curitiba - Sede Ecoville, Rua Deputado Heitor Alencar Furtado, 4900, 81280-340, Curitiba, Brazil.
  3. Ivan Callejas: Departamento de Arquitetura e Urbanismo, Universidade Federal de Mato Grosso - UFMT, Cuiabá, Brazil.
  4. Solange Leder: Departamento de Arquitetura e Urbanismo, Universidade Federal da Paraíba - UFPB, João Pessoa, Brazil.

Abstract

The application of innovative systems using low-cost microcontrollers in human biometeorology studies is a promising alternative to conventional monitoring devices, which are usually cost-intensive and provide measurements at specific points, as in stationary meteorological stations. A Portable Low-cost Environmental Monitoring System (PLEMS) aimed at the pedestrian scale is introduced. The backpack-type equipment consists of a microcontroller with attached sensors that assess environmental conditions in a broad sense, integrating measurements of air quality, lighting and noise levels alongside variables typically measured at meteorological stations. The application of the system took place in altogether 12 environmental walks carried out with questionnaire-surveys with concurrent environmental monitoring with the PLEMS in Curitiba, Brazil, a subtropical location characterized by a Cfb climate type. Results allowed us to test the equipment and method of data gathering within a limited period (approximately 50 min) and for a short walking circuit of 800 m. The equipment was successfully able to capture even slightest differences in environmental conditions among points of interest, whereas subjective responses (n= 3843 responses to a total of 11 questions) showed consistency with measured data. From a multi-domain perspective, relevant insights could be obtained for the measured variables.

Keywords

References

  1. Al-Qawasmi J, Saeed M, Asfour OS, Aldosary AS (2021) Assessing urban quality of life: developing the criteria for Saudi cities. Front Built Environ 7:682391. https://doi.org/10.3389/fbuil.2021.682391 [DOI: 10.3389/fbuil.2021.682391]
  2. Arslan RC, Reitz AK, Driebe JC, Gerlach TM, Penke L (2021) Routinely randomize potential sources of measurement reactivity to estimate and adjust for biases in subjective reports. Psychol Methods 26(2):175–185. https://doi.org/10.1037/met0000294 [DOI: 10.1037/met0000294]
  3. Bikis A (2023, 2023) Urban air pollution and greenness in relation to public health. J Environ Public Health. https://doi.org/10.1155/2023/8516622
  4. Brazilian Ministry of Health (2017) Department of Surveillance of Non-Communicable Diseases and Health Promotion. Ministry of Health, Brasília https://pesquisa.bvsalud.org/bvsms/resource/pt/mis-39307
  5. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B et al (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494. https://doi.org/10.1007/s00484-011-0454-1 [DOI: 10.1007/s00484-011-0454-1]
  6. Cabanac M (1971) Physiological role of pleasure. Science 173(4002):1103–1107. https://doi.org/10.1126/science.173.4002.1103 [DOI: 10.1126/science.173.4002.1103]
  7. Candas V, Dufour A (2005) Thermal comfort: multisensory interactions? J Physiol Anthropol Appl Hum Sci 24(1):33–36. https://doi.org/10.2114/jpa.24.33 [DOI: 10.2114/jpa.24.33]
  8. Cureau RJ, Pigliautile I, Pisello AL (2022) A new wearable system for sensing outdoor environmental conditions for monitoring hyper-microclimate. Sensors 22(2):502. https://doi.org/10.3390/s22020502 [DOI: 10.3390/s22020502]
  9. Dubreuil V, Fante KP, Planchon O, Sant'anna Neto JL (2018) Os tipos de climas anuais no Brasil : uma aplicação da classificação de Köppen de 1961 a 2015. Confins 37:2018. https://doi.org/10.4000/confins.15738 [DOI: 10.4000/confins.15738]
  10. Dzyuban Y, Hondula DM, Vanos JK, Middel A, Coseo PJ, Kuras ER, Redman CL (2022) Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Sci Total Environ 834:155294. https://doi.org/10.1016/j.scitotenv.2022.155294 [DOI: 10.1016/j.scitotenv.2022.155294]
  11. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972. https://doi.org/10.1152/jappl.1999.87.5.1957 [DOI: 10.1152/jappl.1999.87.5.1957]
  12. Glossary of terms for thermal physiology (2003) Third Edition revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS Thermal Commission). J Therm Biol 28:75–106
  13. Granados-López D, Díez-Mediavilla M, Dieste-Velasco MI, Suárez-García A, Alonso-Tristán C (2020) Evaluation of the vertical sky component without obstructions for daylighting in Burgos, Spain. Appl Sci 10(9):3095. https://doi.org/10.3390/app10093095 [DOI: 10.3390/app10093095]
  14. Ham, J. (2015). Radiation Shield for Weather Station Temperature/Humidity. https://www.thingiverse.com/thing:1067700 . Accessed: Apr 1, 2023.
  15. Höppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Build 34(6):661–665. https://doi.org/10.1016/S0378-7788(02)00017-8 [DOI: 10.1016/S0378-7788(02)00017-8]
  16. IGiPZ PAN –Instytut Geografii I Przestrzennego Zagospodarowania – PAN. (2020). BioKlima - Universal tool for bioclimatic and thermophysiological studies. https://www.igipz.pan.pl/Bioklima-zgik.html . Accessed: Apr 25, 2023.
  17. International Organization for Standardization (1995) ISO 10551: Ergonomics of the thermal environments – Assessment of the influence of the thermal environment using subjective judgment scales. ISO, Geneva
  18. International Organization for Standardization (1998) ISO 7726: Ergonomics of the thermal environments – Instruments for measuring physical quantities. ISO, Geneva
  19. Kousis I, Manni M, Pisello AL (2022) Environmental mobile monitoring of urban microclimates: A review. Renew Sust Energ Rev 169:112847. https://doi.org/10.1016/j.rser.2022.112847 [DOI: 10.1016/j.rser.2022.112847]
  20. Krauss R (2016) Combining Raspberry Pi and Arduino to form a low-cost, real-time autonomous vehicle platform, vol 2016. American Control Conference (ACC), Boston, MA, USA, pp 6628–6633. https://doi.org/10.1109/ACC.2016.7526714 [DOI: 10.1109/ACC.2016.7526714]
  21. Lam CKC, Yang H, Yang X, Liu J, Ou C, Cui S et al (2020) Cross-modal effects of thermal and visual conditions on outdoor thermal and visual comfort perception. Build Environ 186:107297. https://doi.org/10.1016/j.buildenv.2020.107297 [DOI: 10.1016/j.buildenv.2020.107297]
  22. Lau KKL, Tan Z, Morakinyo TE, Ren C, Lau KKL, Tan Z et al (2022) Dynamic Response of Pedestrian Thermal Comfort. In: Outdoor Thermal Comfort in Urban Environment: Assessments and Applications in Urban Planning and Design, pp 35–50 [DOI: 10.1007/978-981-16-5245-5_3]
  23. Lenzholzer S, de Vries S (2020) Exploring outdoor thermal perception—a revised model. Int J Biometeorol 64:293–300. https://doi.org/10.1007/s00484-019-01777-z [DOI: 10.1007/s00484-019-01777-z]
  24. Middel A, Krayenhoff ES (2019) Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci Total Environ 687:137–151. https://doi.org/10.1016/j.scitotenv.2019.06.085 [DOI: 10.1016/j.scitotenv.2019.06.085]
  25. Nazarian N, Liu S, Kohler M, Lee JK, Miller C, Chow WT et al (2021) Project Coolbit: can your watch predict heat stress and thermal comfort sensation? Environ Res Lett 16(3):034031. https://doi.org/10.1088/1748-9326/abd130 [DOI: 10.1088/1748-9326/abd130]
  26. Nitidara NPA, Sarwono J, Suprijanto S, Soelami FN (2022) The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate. Sustain Cities Soc 78:103622. https://doi.org/10.1016/j.scs.2021.103622 [DOI: 10.1016/j.scs.2021.103622]
  27. Nouman AS, Chokhachian A, Santucci D, Auer T (2019) Prototyping of Environmental Kit for Georeferenced Transient Outdoor Comfort Assessment. ISPRS Int J Geo Inf 8(2):76. https://doi.org/10.3390/ijgi8020076 [DOI: 10.3390/ijgi8020076]
  28. Pigliautile I, Pisello AL (2018) A new wearable monitoring system for investigating pedestrians' environmental conditions: Development of the experimental tool and start-up findings. Sci Total Environ 630:690–706. https://doi.org/10.1016/j.scitotenv.2018.02.208 [DOI: 10.1016/j.scitotenv.2018.02.208]
  29. Piracha A, Chaudhary MT (2022) Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 14:9234. https://doi.org/10.3390/su14159234 [DOI: 10.3390/su14159234]
  30. Romero Rodríguez L, Sánchez Ramos J, Álvarez Domínguez S (2022) Simplifying the Process to Perform Urban Heat Island Measurements: Design of a New App And Low-Cost Arduino Device. https://doi.org/10.2139/ssrn.4300037 [DOI: 10.2139/ssrn.4300037]
  31. Rossi F, Anderini E, Castellani B, Nicolini A, Morini E (2015) Integrated improvement of occupants' comfort in urban areas during outdoor events. Build Environ 93:285–292. https://doi.org/10.1016/j.buildenv.2015.07.018 [DOI: 10.1016/j.buildenv.2015.07.018]
  32. Schweiker M, Ampatzi E, Andargie MS, Andersen RK, Azar E, Barthelmes VM et al (2020) Review of multi-domain approaches to indoor environmental perception and behaviour. Build Environ 176:106804. https://doi.org/10.1016/j.buildenv.2020.106804 [DOI: 10.1016/j.buildenv.2020.106804]
  33. Tsin PK, Knudby A, Krayenhoff E, Ho HC, Brauer M, Henderson S (2016) Microscale mobile monitoring of urban air temperature. Urban Clim 18(1):58–72. https://doi.org/10.1016/j.uclim.2016.10.001 [DOI: 10.1016/j.uclim.2016.10.001]

MeSH Term

Humans
Environmental Monitoring
Brazil
Walking
Adult
Surveys and Questionnaires
Female
Pedestrians
Lighting
Male
Noise
Middle Aged

Word Cloud

Created with Highcharts 10.0.0environmentalmonitoringapplicationEnvironmentalequipmentmeasuredsystemlow-costmeasurementspointsmeteorologicalstationsLow-costPLEMSconditionsvariableswalksdataresponseswalkinnovativesystemsusingmicrocontrollershumanbiometeorologystudiespromisingalternativeconventionaldevicesusuallycost-intensiveprovidespecificstationaryPortableMonitoringSystemaimedpedestrianscaleintroducedbackpack-typeconsistsmicrocontrollerattachedsensorsassessbroadsenseintegratingairqualitylightingnoiselevelsalongsidetypicallytookplacealtogether12carriedquestionnaire-surveysconcurrentCuritibaBrazilsubtropicallocationcharacterizedCfbclimatetypeResultsallowedustestmethodgatheringwithinlimitedperiodapproximately50minshortwalkingcircuit800msuccessfullyablecaptureevenslightestdifferencesamonginterestwhereassubjectiven=3843total11questionsshowedconsistencymulti-domainperspectiverelevantinsightsobtainedIntroducingPLEMS:portableBackpackClimateMicrocontroller

Similar Articles

Cited By

No available data.