Characteristics of SARS-CoV-2 and Opisthorchis viverrini coinfections: insights into immune responses and clinical outcomes.

Lakhanawan Charoensuk, Somchai Pinlaor, Boonpeng Nimala, Sutas Suttiprapa, Suksanti Prakobwong
Author Information
  1. Lakhanawan Charoensuk: Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand.
  2. Somchai Pinlaor: Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
  3. Boonpeng Nimala: Nam-Phon Hospital of Health Promotion, Nong Wua Sor District, Udon Thani, 41360, Thailand.
  4. Sutas Suttiprapa: Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
  5. Suksanti Prakobwong: Department of Biology, Geoinformatics, Environment and Health Science Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand. suksanti.pr@udru.ac.th.

Abstract

The effects of co-infections with SARS-CoV-2 and parasitic diseases have been little investigated in terms of immune response, disease dynamics, and clinical outcomes. This study aimed to explore the impact of co-infection with Opisthorchis viverrini and SARS-CoV-2 on the immune response concerning clinical symptoms and the severity of pulmonary abnormalities. A cross-sectional study was conducted, including healthy participants as controls, participants with opisthorchiasis, SARS-CoV-2 infection, and a co-infection group with both diseases. Characteristics of SARS-CoV-2 infection were assessed based on clinical parameters and severity of pulmonary abnormalities, whereas opisthorchiasis burden was evaluated by eggs-per-gram (EPG) counts. Immune responses were assessed by measuring levels of interferon-�� (IFN-��), SARS-CoV-2 anti-spike receptor binding domain (RBD) IgG, and neutralizing antibody against SARS-CoV-2. In the co-infected group, clinical parameters and hospitalization rates were lower than in the SARS-CoV-2 group. Pulmonary abnormalities, such as bronchial fibrosis, were commonly observed in the SARS-CoV-2 group, leading to hospitalization in some cases. Participants with opisthorchiasis had higher IFN-�� levels than healthy individuals. IFN-�� levels were significantly lower in the co-infection group compared with the SARS-CoV-2 group (P���=���0.002). There was a significant (P���=���0.044) positive correlation between RBD-specific IgG and percent neutralization levels in the SARS-CoV-2 group. Levels of both were somewhat lower (not statistically significant) in the co-infection group. A negative correlation was observed between opisthorchiasis burden (EPG counts) and IFN-�� and RBD-specific IgG levels in the co-infected group. Following vaccination, the increase in IgG levels against the RBD protein was significantly lower in the co-infected group than in the SARS-CoV-2 group. These results suggest that O. viverrini infection suppresses immune responses and may lead to a reduction in severity in cases of SARS-CoV-2 co-infection.

Keywords

References

  1. Akelew Y, Andualem H, Ebrahim E, Atnaf A, Hailemichael W (2022) Immunomodulation of COVID-19 severity by helminth co-infection: implications for COVID-19 vaccine efficacy. Immun Inflamm Dis 10(3):e573. https://doi.org/10.1002/iid3.573 [DOI: 10.1002/iid3.573]
  2. Aleebrahim-Dehkordi E et al (2022) T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: from cytokines produced to immune responses. Transpl Immunol 70:101495. https://doi.org/10.1016/j.trim.2021.101495 [DOI: 10.1016/j.trim.2021.101495]
  3. Charoensuk L, Subrungruang I, Mungthin M, Pinlaor S, Suwannahitatorn P (2019) Comparison of stool examination techniques to detect Opisthorchis viverrini in low intensity infection. Acta Trop 191:13���16. https://doi.org/10.1016/j.actatropica.2018.12.018 [DOI: 10.1016/j.actatropica.2018.12.018]
  4. Colley DG, Secor WE (2014) Immunology of human schistosomiasis. Parasite Immunol 36(8):347���357. https://doi.org/10.1111/pim.12087.doi:10.1111/pim.12087
  5. Diao B et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 11:827. https://doi.org/10.3389/fimmu.2020.00827 [DOI: 10.3389/fimmu.2020.00827]
  6. Gregori S, Goudy KS, Roncarolo MG (2012) The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front Immunol 3:30. https://doi.org/10.3389/fimmu.2012.00030 [DOI: 10.3389/fimmu.2012.00030]
  7. Hananeh WM, Radhi A, Mukbel RM, Ismail ZB (2022) Effects of parasites coinfection with other pathogens on animal host: a literature review. Vet World 15(10):2414���2424. https://doi.org/10.14202/vetworld.2022.2414-2424 [DOI: 10.14202/vetworld.2022.2414-2424]
  8. Hilligan KL et al (2022) Helminth exposure protects against murine SARS-CoV-2 infection through macrophage dependent T cell activation. bioRxiv. https://doi.org/10.1101/2022.11.09.515832
  9. Hu B, Huang S, Yin L (2021) The cytokine storm and COVID-19. J Med Virol 93(1):250���256. https://doi.org/10.1002/jmv.26232 [DOI: 10.1002/jmv.26232]
  10. Kang S, Brown HM, Hwang S (2018) Direct antiviral mechanisms of interferon-gamma. Immune Netw 18(5):e33. https://doi.org/10.4110/in.2018.18.e33 [DOI: 10.4110/in.2018.18.e33]
  11. Li Q et al (2022) Immune response in COVID-19: what is next? Cell Death Differ 29(6):1107���1122. https://doi.org/10.1038/s41418-022-01015-x [DOI: 10.1038/s41418-022-01015-x]
  12. Lopez-Farfan D et al (2022) Prevalence of SARS-CoV-2 and co-infection with malaria during the first wave of the pandemic (the Burkina Faso case). Front Public Health 10:1048404. https://doi.org/10.3389/fpubh.2022.1048404 [DOI: 10.3389/fpubh.2022.1048404]
  13. Ma Y, Su XZ, Lu F (2020) The roles of type I interferon in co-infections with parasites and viruses, bacteria, or other parasites. Front Immunol 11:1805. https://doi.org/10.3389/fimmu.2020.01805 [DOI: 10.3389/fimmu.2020.01805]
  14. Manning J et al (2022) SARS-CoV-2 cross-reactivity in prepandemic serum from rural malaria-infected persons. Cambodia Emerg Infect Dis 28(2):440���444. https://doi.org/10.3201/eid2802.211725 [DOI: 10.3201/eid2802.211725]
  15. Moss P (2022) The T cell immune response against SARS-CoV-2. Nat Immunol 23(2):186���193. https://doi.org/10.1038/s41590-021-01122-w [DOI: 10.1038/s41590-021-01122-w]
  16. Nemati Zargaran F, Rostamian M, Kooti S, Madanchi H, Ghadiri K (2023) Co-infection of COVID-19 and parasitic diseases: a systematic review. Parasite Epidemiol Control 21:e00299. https://doi.org/10.1016/j.parepi.2023.e00299 [DOI: 10.1016/j.parepi.2023.e00299]
  17. Ogorodova LM et al (2015) Opisthorchiasis: an overlooked danger. PLoS Negl Trop Dis 9(4):e0003563. https://doi.org/10.1371/journal.pntd.0003563 [DOI: 10.1371/journal.pntd.0003563]
  18. Pinlaor S et al (2005) Opisthorchis viverrini antigen induces the expression of Toll-like receptor 2 in macrophage RAW cell line. Int J Parasitol 35(6):591���596. https://doi.org/10.1016/j.ijpara.2005.02.003 [DOI: 10.1016/j.ijpara.2005.02.003]
  19. Prakobwong S et al (2017) Epidemiology of Opisthorchis viverrini in an endemic area of Thailand, an integrative approach. Helminthologia 54(4):298���306. https://doi.org/10.1515/helm-2017-0036 [DOI: 10.1515/helm-2017-0036]
  20. Sadaow L et al (2019) Development of an immunochromatographic point-of-care test for serodiagnosis of opisthorchiasis and clonorchiasis. Am J Trop Med Hyg 101(5):1156���1160. https://doi.org/10.4269/ajtmh.19-0446 [DOI: 10.4269/ajtmh.19-0446]
  21. Sanchez-Marques R, Mas-Coma S, Salas-Coronas J, Boissier J, Bargues MD (2022) Research on schistosomiasis in the era of the COVID-19 pandemic: a bibliometric analysis. Int J Environ Res Public Health 19(13):8051. https://doi.org/10.3390/ijerph19138051 [DOI: 10.3390/ijerph19138051]
  22. Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY (2019) Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 8(1):49. https://doi.org/10.1186/s40249-019-0560-6 [DOI: 10.1186/s40249-019-0560-6]
  23. Sithithaworn P et al (2012) The current status of opisthorchiasis and clonorchiasis in the Mekong Basin. Parasitol Int 61(1):10���16. https://doi.org/10.1016/j.parint.2011.08.014 [DOI: 10.1016/j.parint.2011.08.014]
  24. Sripa B, Jumnainsong A, Tangkawattana S, Haswell MR (2018) Immune response to Opisthorchis viverrini infection and its role in pathology. Adv Parasitol 102:73���95. https://doi.org/10.1016/bs.apar.2018.08.003 [DOI: 10.1016/bs.apar.2018.08.003]
  25. Surapaitoon A, Suttiprapa S, Khuntikeo N, Pairojkul C, Sripa B (2017) Cytokine profiles in Opisthorchis viverrini stimulated peripheral blood mononuclear cells from cholangiocarcinoma patients. Parasitol Int 66(1):889���892. https://doi.org/10.1016/j.parint.2016.10.009 [DOI: 10.1016/j.parint.2016.10.009]
  26. Viurcos-Sanabria R et al (2022) In vitro exposure of primary human T cells and monocytes to polyclonal stimuli reveals a basal susceptibility to display an impaired cellular immune response and develop severe COVID-19. Front Immunol 13:897995. https://doi.org/10.3389/fimmu.2022.897995 [DOI: 10.3389/fimmu.2022.897995]
  27. Wang Q et al (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181(4):894-904 e9. https://doi.org/10.1016/j.cell.2020.03.045 [DOI: 10.1016/j.cell.2020.03.045]
  28. Whitehead B, Christiansen S, Ostergaard L, Nejsum P (2022) Helminths and COVID-19 susceptibility, disease progression, and vaccination efficacy. Trends Parasitol 38(4):277���279. https://doi.org/10.1016/j.pt.2022.01.007 [DOI: 10.1016/j.pt.2022.01.007]
  29. Wolday D et al (2021a) Effect of co-infection with intestinal parasites on COVID-19 severity: a prospective observational cohort study. EClinicalMedicine 39:101054. https://doi.org/10.1016/j.eclinm.2021.101054 [DOI: 10.1016/j.eclinm.2021.101054]
  30. Wolday D et al (2021b) Interrogating the impact of intestinal parasite-microbiome on pathogenesis of COVID-19 in Sub-Saharan Africa. Front Microbiol 12:614522. https://doi.org/10.3389/fmicb.2021.614522 [DOI: 10.3389/fmicb.2021.614522]
  31. Yang M et al (2021) Structural basis of a human neutralizing antibody specific to the SARS-CoV-2 spike protein receptor-binding domain. Microbiol Spectr 9(2):e0135221. https://doi.org/10.1128/Spectrum.01352-21 [DOI: 10.1128/Spectrum.01352-21]
  32. Yuan M, Liu H, Wu NC, Wilson IA (2021) Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biochem Biophys Res Commun 538:192���203. https://doi.org/10.1016/j.bbrc.2020.10.012 [DOI: 10.1016/j.bbrc.2020.10.012]
  33. Zheng J et al (2022) Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cell Mol Immunol 19(2):150���157. https://doi.org/10.1038/s41423-021-00774-w [DOI: 10.1038/s41423-021-00774-w]

MeSH Term

Humans
COVID-19
Opisthorchiasis
Coinfection
Animals
Male
Opisthorchis
Female
Cross-Sectional Studies
SARS-CoV-2
Adult
Middle Aged
Interferon-gamma
Antibodies, Neutralizing
Immunoglobulin G
Aged
Antibodies, Viral
Antibodies, Helminth

Chemicals

Interferon-gamma
Antibodies, Neutralizing
Immunoglobulin G
Antibodies, Viral
Antibodies, Helminth

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2grouplevelsclinicalco-infectionimmuneviverriniopisthorchiasisinfectionresponsesIFN-��IgGloweroutcomesOpisthorchisseverityabnormalitiesco-infecteddiseasesresponsestudypulmonaryhealthyparticipantsCharacteristicsassessedparametersburdenEPGcountsImmuneRBDhospitalizationobservedcasessignificantlyP���=���0significantcorrelationRBD-specificeffectsco-infectionsparasiticlittleinvestigatedtermsdiseasedynamicsaimedexploreimpactconcerningsymptomscross-sectionalconductedincludingcontrolsbasedwhereasevaluatedeggs-per-grammeasuringinterferon-��anti-spikereceptorbindingdomainneutralizingantibodyratesPulmonarybronchialfibrosiscommonlyleadingParticipantshigherindividualscompared002044positivepercentneutralizationLevelssomewhatstatisticallynegativeFollowingvaccinationincreaseproteinresultssuggestOsuppressesmayleadreductioncoinfections:insightsClinicalSeverity

Similar Articles

Cited By

No available data.