Recent advances in essential oils and their nanoformulations for poultry feed.

Fatemeh Movahedi, Nilesh Nirmal, Pengyuan Wang, Hongping Jin, Lisbeth Grøndahl, Li Li
Author Information
  1. Fatemeh Movahedi: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
  2. Nilesh Nirmal: Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
  3. Pengyuan Wang: Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
  4. Hongping Jin: JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China.
  5. Lisbeth Grøndahl: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia. l.grondahl@uq.edu.au.
  6. Li Li: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia. l.li2@uq.edu.au. ORCID

Abstract

Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.

Keywords

References

  1. J Food Prot. 2023 Feb;86(2):100025 [PMID: 36916569]
  2. Int J Pharm. 2017 Mar 15;519(1-2):67-78 [PMID: 28089935]
  3. Anim Nutr. 2018 Jun;4(2):179-186 [PMID: 30140757]
  4. Molecules. 2017 Jan 01;22(1): [PMID: 28045446]
  5. Int J Food Microbiol. 2004 Aug 1;94(3):313-22 [PMID: 15246242]
  6. Poult Sci. 2015 Jun;94(6):1419-30 [PMID: 25743421]
  7. J Colloid Interface Sci. 2019 Nov 15;556:258-265 [PMID: 31450020]
  8. J Clin Lab Anal. 2022 Sep;36(9):e24655 [PMID: 35949048]
  9. J Sci Food Agric. 2021 Sep;101(12):4879-4890 [PMID: 33852733]
  10. Sci Rep. 2021 Apr 8;11(1):7742 [PMID: 33833292]
  11. Front Cell Infect Microbiol. 2021 Jan 08;10:571040 [PMID: 33489930]
  12. Front Microbiol. 2019 Mar 26;10:602 [PMID: 30972050]
  13. Pharmaceuticals (Basel). 2013 Nov 25;6(12):1451-74 [PMID: 24287491]
  14. Anim Nutr. 2018 Jun;4(2):170-178 [PMID: 30140756]
  15. BMC Complement Altern Med. 2019 Jan 18;19(1):24 [PMID: 30658640]
  16. Nat Rev Microbiol. 2021 Jan;19(1):5-6 [PMID: 33024312]
  17. Heliyon. 2022 Aug 03;8(8):e10074 [PMID: 35992007]
  18. Antibiotics (Basel). 2021 Apr 10;10(4): [PMID: 33920237]
  19. Eur J Pharm Sci. 2019 Feb 1;128:158-161 [PMID: 30508582]
  20. BMC Complement Altern Med. 2010 Nov 10;10:65 [PMID: 21067604]
  21. J Nanobiotechnology. 2022 Aug 6;20(1):362 [PMID: 35933341]
  22. J Dairy Sci. 2016 Aug;99(8):6097-6104 [PMID: 27265173]
  23. Front Microbiol. 2012 Jan 25;3:12 [PMID: 22291693]
  24. J Liposome Res. 2013 Dec;23(4):268-75 [PMID: 23879218]
  25. Carbohydr Polym. 2022 Feb 1;277:118815 [PMID: 34893232]
  26. ACS Appl Bio Mater. 2021 Nov 15;4(11):7865-7878 [PMID: 35006768]
  27. Molecules. 2021 Nov 25;26(23): [PMID: 34885715]
  28. AAPS J. 2012 Jun;14(2):282-95 [PMID: 22407288]
  29. Vet Sci. 2022 Jan 24;9(2): [PMID: 35202296]
  30. Front Vet Sci. 2017 Aug 10;4:126 [PMID: 28848739]
  31. J Food Prot. 2006 May;69(5):1046-55 [PMID: 16715803]
  32. Br Poult Sci. 2019 Oct;60(5):530-538 [PMID: 31124697]
  33. Molecules. 2019 Dec 26;25(1): [PMID: 31888005]
  34. Plant Physiol Biochem. 2008 Mar;46(3):356-70 [PMID: 18272377]
  35. Br Poult Sci. 2012;53(5):631-9 [PMID: 23281757]
  36. Curr Microbiol. 2009 Nov;59(5):554-8 [PMID: 19688375]
  37. Poult Sci. 2020 Jun;99(6):2944-2954 [PMID: 32475429]
  38. Nutrients. 2023 Apr 06;15(7): [PMID: 37049640]
  39. Biofouling. 2016;32(2):215-25 [PMID: 26838161]
  40. Crit Rev Microbiol. 2017 Nov;43(6):668-689 [PMID: 28346030]
  41. Microorganisms. 2022 Jan 19;10(2): [PMID: 35208660]
  42. Animal. 2021 Jan;15(1):100022 [PMID: 33573947]
  43. Molecules. 2020 Sep 09;25(18): [PMID: 32917001]
  44. J Appl Microbiol. 2006 Dec;101(6):1232-40 [PMID: 17105553]
  45. Int J Pharm. 2010 Jan 4;383(1-2):170-7 [PMID: 19732813]
  46. Planta Med. 2021 Mar;87(3):236-251 [PMID: 33176380]
  47. Front Bioeng Biotechnol. 2021 Sep 09;9:705886 [PMID: 34568298]
  48. Vet Med Sci. 2022 Jan;8(1):267-288 [PMID: 34761555]
  49. Food Sci Technol Int. 2019 Jan;25(1):24-37 [PMID: 30149730]
  50. Vet World. 2021 Feb;14(2):483-491 [PMID: 33776315]
  51. Environ Sci Technol. 2006 Oct 1;40(19):6151-6 [PMID: 17051814]
  52. J Ethnopharmacol. 2020 May 10;253:112652 [PMID: 32035880]
  53. Int J Parasitol Drugs Drug Resist. 2021 Apr;15:126-133 [PMID: 33647675]
  54. Int J Antimicrob Agents. 2018 Sep;52(3):309-315 [PMID: 29777759]
  55. Biomaterials. 2012 Mar;33(9):2791-800 [PMID: 22230222]
  56. Food Chem X. 2022 Jan 19;13:100217 [PMID: 35498985]
  57. Lett Appl Microbiol. 2018 Jun;66(6):506-513 [PMID: 29569372]
  58. Medicines (Basel). 2016 Sep 22;3(4): [PMID: 28930135]
  59. Molecules. 2010 Dec 15;15(12):9252-87 [PMID: 21160452]
  60. Nutrients. 2019 Nov 15;11(11): [PMID: 31731683]
  61. Microorganisms. 2022 Apr 21;10(5): [PMID: 35630307]
  62. ACS Omega. 2020 Jul 17;5(29):18185-18197 [PMID: 32743193]
  63. Food Sci Nutr. 2021 Jun 01;9(7):3893-3905 [PMID: 34262746]
  64. Drug Deliv. 2022 Dec;29(1):1007-1024 [PMID: 35363104]
  65. Adv Colloid Interface Sci. 2017 Oct;248:85-104 [PMID: 28780961]
  66. AAPS PharmSciTech. 2018 Apr;19(3):1133-1140 [PMID: 29218583]
  67. Adv Drug Deliv Rev. 2001 Apr 25;47(2-3):165-96 [PMID: 11311991]
  68. J Food Sci Technol. 2015 Sep;52(9):5790-8 [PMID: 26344993]
  69. Eur J Pharm Biopharm. 2005 Jan;59(1):161-8 [PMID: 15567314]
  70. Food Chem. 2018 Jul 15;254:1-7 [PMID: 29548427]
  71. J Med Microbiol. 2011 Oct;60(Pt 10):1479-1486 [PMID: 21862758]
  72. Molecules. 2021 Jul 02;26(13): [PMID: 34279395]
  73. Int J Pharm. 2019 Apr 20;561:161-170 [PMID: 30836153]
  74. Heliyon. 2022 May 13;8(5):e09394 [PMID: 35600452]
  75. Int J Food Sci. 2022 Mar 7;2022:4035033 [PMID: 35295821]
  76. Biomater Sci. 2020 Sep 7;8(17):4653-4664 [PMID: 32672255]
  77. Res Pharm Sci. 2018 Aug;13(4):288-303 [PMID: 30065762]
  78. J Drug Deliv. 2012;2012:750891 [PMID: 22175030]
  79. Microorganisms. 2022 Jul 26;10(8): [PMID: 35893562]
  80. Animal. 2019 Mar;13(3):502-508 [PMID: 29983137]
  81. Carbohydr Polym. 2020 May 15;236:116075 [PMID: 32172888]
  82. Food Chem. 2015 Jul 1;178:52-62 [PMID: 25704683]
  83. Poult Sci. 2009 Nov;88(11):2368-74 [PMID: 19834088]
  84. Front Microbiol. 2016 May 23;7:760 [PMID: 27242772]
  85. Adv Drug Deliv Rev. 2022 Jan;180:114079 [PMID: 34902516]
  86. Molecules. 2019 Apr 22;24(8): [PMID: 31013583]
  87. Macromol Biosci. 2021 May;21(5):e2100005 [PMID: 33738977]

Word Cloud

Created with Highcharts 10.0.0EOspoultryfeedoilsadditivesEssentialnanoformulationspotentialgrowthperformanceantimicrobialantioxidantpropertieshighstabilitybioavailabilityantibacteriallimitationsNanoformulationsAntibioticsboostbecomingincreasinglycontentiousdueconcernsresistancedevelopmentnaturalplant-derivedcompoundsdemonstratedmaypotentiallyimprovehealthincludedNeverthelessincorporationnutritionalhinderedvolatilitylowwatersolubilitypoorintestinalabsorptionsensitivityenvironmentalconditionsRecentlynanoencapsulationstrategiesusingemergedsolutionchallengesimprovingenablingtargeteddeliveryreviewprovidesoverviewcurrentapplicationsrecentadvancementsnano-engineeringovercomeFurthermoreoutlinefutureresearchdirectionEOemphasizingpromisingroleadvancingsustainablenutritionHighlights•knownpowerfulantioxidantsagentsreplaceantibioticsshownimprovedbioactivitystorageNanoformulationpromotesgutadsorptionRecentadvancesessentialAntibacterialactivitiesAntioxidantsPoultry

Similar Articles

Cited By