Exploring Evolutionary Adaptations and Genomic Advancements to Improve Heat Tolerance in Chickens.

Ali Hassan Nawaz, Phatthawin Setthaya, Chungang Feng
Author Information
  1. Ali Hassan Nawaz: College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. ORCID
  2. Phatthawin Setthaya: Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand.
  3. Chungang Feng: College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. ORCID

Abstract

Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system. The domestication of chickens from the Red junglefowl () has resulted in the development of various breeds with distinct genetic differences. Over the past few years, deliberate breeding for desirable traits (such as meat production and egg quality) in chickens has resulted in the emergence of various economically valuable breeds. However, this selective breeding has also caused a decrease in the genetic diversity of chickens, making them more susceptible to environmental stressors like heat stress. Consequently, the chicken breeds currently in use may possess a limited ability to adapt to challenging conditions, such as extreme heat. This review focuses on evaluating potential genes and pathways responsible for heat tolerance, including heat shock response, antioxidant defense systems, immune function, and cellular homeostasis. This article will also discuss the physiological and behavioral responses of chicken varieties that exhibit genetic resistance to heat, such as the naked neck and dwarf traits in different indigenous chickens. This article intends to review the current genomic findings related to heat tolerance in chickens that used methods such as the genome-wide association study (GWAS) and quantitative trait loci (QTL) mapping, offering valuable insights for the sustainability of poultry in the face of global warming.

Keywords

References

  1. J Therm Biol. 2018 Dec;78:131-139 [PMID: 30509629]
  2. Anim Genet. 2016 Feb;47(1):133-4 [PMID: 26427605]
  3. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12505-9 [PMID: 7809067]
  4. Vet Sci. 2019 Jan 09;6(1): [PMID: 30634470]
  5. ScientificWorldJournal. 2021 Oct 18;2021:8711286 [PMID: 34707467]
  6. Antioxidants (Basel). 2023 Aug 27;12(9): [PMID: 37759978]
  7. Methods Enzymol. 2011;491:183-98 [PMID: 21329801]
  8. Animals (Basel). 2020 Apr 15;10(4): [PMID: 32326487]
  9. Evol Appl. 2022 May 13;15(6):992-1001 [PMID: 35782008]
  10. J Biol Chem. 2009 Apr 3;284(14):9176-83 [PMID: 19179333]
  11. R Soc Open Sci. 2018 Dec 12;5(12):180325 [PMID: 30662712]
  12. BMC Genomics. 2013 Jan 28;14:59 [PMID: 23356797]
  13. Front Genet. 2020 Sep 25;11:543294 [PMID: 33101376]
  14. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17312-7 [PMID: 18981413]
  15. J Therm Biol. 2019 Feb;80:113-118 [PMID: 30784474]
  16. Neuroscience. 2020 Nov 1;447:74-93 [PMID: 31881259]
  17. Sci Rep. 2015 Oct 16;5:15345 [PMID: 26471470]
  18. Animals (Basel). 2023 Jan 16;13(2): [PMID: 36670857]
  19. Curr Issues Mol Biol. 2022 Jun 08;44(6):2664-2682 [PMID: 35735623]
  20. iScience. 2020 Oct 03;23(11):101644 [PMID: 33103083]
  21. Animals (Basel). 2022 Aug 12;12(16): [PMID: 36009646]
  22. Genet Sel Evol. 2015 Dec 17;47:96 [PMID: 26681307]
  23. J Poult Sci. 2019 Jul 25;56(3):224-230 [PMID: 32055218]
  24. Cell. 2017 Dec 14;171(7):1625-1637.e13 [PMID: 29198525]
  25. Genes (Basel). 2019 Jan 18;10(1): [PMID: 30669351]
  26. J Neurosci. 2015 Dec 2;35(48):15921-33 [PMID: 26631473]
  27. Biochim Biophys Acta. 2014 Oct;1843(10):2150-63 [PMID: 24440275]
  28. Animals (Basel). 2020 Jul 24;10(8): [PMID: 32722335]
  29. Animals (Basel). 2020 Dec 16;10(12): [PMID: 33339245]
  30. Mol Biol Rep. 2023 Aug;50(8):6963-6974 [PMID: 37358764]
  31. Int J Mol Sci. 2019 Feb 16;20(4): [PMID: 30781465]
  32. Anim Genet. 2021 Aug;52(4):385-394 [PMID: 34060099]
  33. Biochem J. 2012 Jan 15;441(2):523-40 [PMID: 22187934]
  34. Cell Mol Life Sci. 2005 Mar;62(6):670-84 [PMID: 15770419]
  35. Cells. 2022 Jul 22;11(15): [PMID: 35892559]
  36. Gene. 2014 Aug 10;546(2):200-5 [PMID: 24932999]
  37. Mol Biol Rep. 2023 Jun;50(6):5233-5246 [PMID: 37127810]
  38. Animals (Basel). 2021 Jul 30;11(8): [PMID: 34438700]
  39. Meat Sci. 2020 Apr;162:108025 [PMID: 31841730]
  40. Sci Rep. 2024 Jan 26;14(1):2209 [PMID: 38278850]
  41. Mol Ecol Resour. 2011 Mar;11 Suppl 1:109-16 [PMID: 21429167]
  42. Front Vet Sci. 2020 May 07;7:249 [PMID: 32457922]
  43. Sci Rep. 2021 Jan 21;11(1):2035 [PMID: 33479400]
  44. BMC Genet. 2010 Mar 03;11:17 [PMID: 20199684]
  45. Poult Sci. 2024 Apr;103(4):103537 [PMID: 38428202]
  46. Animal. 2017 Oct;11(10):1783-1790 [PMID: 28228180]
  47. Cell Stress Chaperones. 2019 Nov;24(6):1067-1078 [PMID: 31401771]
  48. Front Physiol. 2023 Apr 14;14:1169375 [PMID: 37123261]
  49. Int J Mol Sci. 2021 May 04;22(9): [PMID: 34064510]
  50. Front Genet. 2019 Jan 14;9:737 [PMID: 30693019]
  51. Int J Biometeorol. 2021 Nov;65(11):1895-1903 [PMID: 34061266]
  52. Poult Sci. 2023 Dec;102(12):103066 [PMID: 37769490]
  53. Front Vet Sci. 2022 Jul 14;9:911685 [PMID: 35909692]
  54. Vet Sci. 2020 Apr 22;7(2): [PMID: 32331280]
  55. Front Genet. 2019 Mar 18;10:197 [PMID: 30936892]
  56. BMC Genomics. 2024 Jan 23;25(1):99 [PMID: 38262957]
  57. Antioxidants (Basel). 2024 Feb 22;13(3): [PMID: 38539804]
  58. Cancer Res Treat. 2004 Aug;36(4):214-21 [PMID: 20368837]
  59. Clin Microbiol Rev. 2009 Oct;22(4):611-33 [PMID: 19822891]
  60. J Immunol. 2018 Jan 1;200(1):305-315 [PMID: 29150563]
  61. Front Genet. 2019 May 08;10:376 [PMID: 31139205]
  62. Animals (Basel). 2013 Apr 24;3(2):356-69 [PMID: 26487407]
  63. Nat Cell Biol. 2018 Sep;20(9):1013-1022 [PMID: 30154567]
  64. Int J Mol Sci. 2019 Apr 11;20(7): [PMID: 30978945]
  65. Cell Res. 2020 Aug;30(8):693-701 [PMID: 32581344]
  66. Sci Rep. 2016 Apr 06;6:23980 [PMID: 27050479]
  67. Poult Sci. 2022 Oct;101(10):102085 [PMID: 36055022]
  68. Front Microbiol. 2023 Sep 19;14:1244004 [PMID: 37795292]
  69. Poult Sci. 2018 Mar 1;97(3):770-780 [PMID: 29267901]
  70. Cancer Res Treat. 2004 Aug;36(4):207-13 [PMID: 20368836]
  71. Poult Sci. 2024 Jan;103(1):103218 [PMID: 37980733]
  72. Antioxidants (Basel). 2019 Jul 22;8(7): [PMID: 31336672]
  73. Vet Sci. 2023 Sep 25;10(10): [PMID: 37888543]
  74. Poult Sci. 2023 Nov;102(11):103048 [PMID: 37797358]
  75. Poult Sci. 2021 May;100(5):101030 [PMID: 33752066]
  76. J Mol Biol. 2019 Jul 12;431(15):2729-2746 [PMID: 31125567]
  77. Front Genet. 2018 Jul 20;9:264 [PMID: 30079080]
  78. J Anim Physiol Anim Nutr (Berl). 2016 Jun;100(3):401-12 [PMID: 26250521]
  79. Front Genet. 2020 Jul 07;11:653 [PMID: 32733534]
  80. Comp Biochem Physiol B Biochem Mol Biol. 2015 Aug;186:36-42 [PMID: 25899861]
  81. J Cell Biol. 2021 Apr 5;220(4): [PMID: 33734301]
  82. Front Vet Sci. 2022 Mar 24;9:802051 [PMID: 35400106]
  83. Poult Sci. 2019 Dec 1;98(12):6378-6387 [PMID: 31406997]
  84. Poult Sci. 2022 Jul;101(7):101821 [PMID: 35537342]
  85. Animal. 2023 Mar;17(3):100707 [PMID: 36764018]
  86. J Adv Res. 2023 May;47:13-25 [PMID: 35907630]
  87. Front Neuroendocrinol. 2022 Jan;64:100953 [PMID: 34757094]
  88. Comp Biochem Physiol Part D Genomics Proteomics. 2019 Sep;31:100602 [PMID: 31212116]
  89. PLoS One. 2018 Apr 26;13(4):e0196215 [PMID: 29698423]
  90. Animals (Basel). 2020 Mar 12;10(3): [PMID: 32178295]
  91. BMC Vet Res. 2022 Jul 23;18(1):289 [PMID: 35871002]
  92. Front Vet Sci. 2023 Sep 27;10:1255520 [PMID: 37841463]
  93. Front Physiol. 2021 Oct 21;12:733134 [PMID: 34744775]
  94. PLoS One. 2021 Jun 4;16(6):e0252474 [PMID: 34086766]
  95. Gen Comp Endocrinol. 2016 Mar 1;228:69-78 [PMID: 26873630]
  96. Genet Sel Evol. 2019 Jun 25;51(1):31 [PMID: 31238874]
  97. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83 [PMID: 21372320]
  98. Int J Mol Sci. 2024 Feb 24;25(5): [PMID: 38473888]
  99. J Anim Breed Genet. 2022 Sep;139(5):574-582 [PMID: 35218583]
  100. Trop Anim Health Prod. 2011 Jan;43(1):21-8 [PMID: 20625931]
  101. BMC Genomics. 2012 Jun 19;13:257 [PMID: 22712610]
  102. Curr Biol. 2018 Feb 19;28(4):R170-R185 [PMID: 29462587]
  103. Stress. 2015;18(5):491-7 [PMID: 26365223]
  104. J Dairy Sci. 2011 Jul;94(7):3642-50 [PMID: 21700054]
  105. Poult Sci. 2020 Oct;99(10):4714-4729 [PMID: 32988506]
  106. Front Genet. 2022 Jul 22;13:906447 [PMID: 35979430]
  107. Front Genet. 2023 Feb 27;14:1127175 [PMID: 36923799]
  108. Poult Sci. 2019 Jan 1;98(1):92-96 [PMID: 30202869]
  109. Int J Biometeorol. 2015 Feb;59(2):127-35 [PMID: 24736810]
  110. PLoS One. 2010 May 19;5(5):e10639 [PMID: 20502703]
  111. J Cell Physiol. 2019 Sep;234(9):14951-14965 [PMID: 30811039]
  112. J Anim Sci Biotechnol. 2024 Apr 1;15(1):45 [PMID: 38556896]
  113. Front Immunol. 2019 Feb 19;10:270 [PMID: 30873159]
  114. J Anim Sci Biotechnol. 2021 Jan 11;12(1):11 [PMID: 33431031]
  115. J Biol Chem. 2019 Feb 8;294(6):2109-2120 [PMID: 30401745]
  116. Zool Res. 2023 Jan 18;44(1):78-89 [PMID: 36349358]
  117. Animals (Basel). 2021 May 20;11(5): [PMID: 34065334]
  118. PLoS One. 2015 May 01;10(5):e0125816 [PMID: 25932638]
  119. Prog Neurobiol. 2010 Oct;92(2):184-211 [PMID: 20685377]
  120. Genet Sel Evol. 2022 Aug 3;54(1):56 [PMID: 35922745]
  121. Genet Sel Evol. 2021 Apr 14;53(1):36 [PMID: 33853523]
  122. J Anim Sci Biotechnol. 2016 Jun 28;7:37 [PMID: 27354915]
  123. BMC Biol. 2020 Feb 12;18(1):13 [PMID: 32050971]
  124. Front Genet. 2023 Apr 03;14:1085590 [PMID: 37077545]
  125. Antioxidants (Basel). 2019 Jul 10;8(7): [PMID: 31295914]
  126. Cell Death Dis. 2011 Apr 07;2:e141 [PMID: 21472004]
  127. Sci Rep. 2020 Nov 2;10(1):18872 [PMID: 33139769]
  128. Autophagy. 2021 Aug;17(8):1809-1827 [PMID: 32686564]
  129. J Therm Biol. 2020 Feb;88:102486 [PMID: 32125976]
  130. Front Genet. 2020 Dec 21;11:582355 [PMID: 33424922]
  131. Nutr Metab (Lond). 2014 Feb 12;11(1):10 [PMID: 24520982]
  132. PLoS Genet. 2023 Jan 19;19(1):e1010551 [PMID: 36656838]
  133. PLoS One. 2017 Oct 11;12(10):e0186083 [PMID: 29020081]
  134. Vet Sci. 2021 Nov 29;8(12): [PMID: 34941825]
  135. J Therm Biol. 2019 May;82:33-42 [PMID: 31128657]
  136. Animals (Basel). 2020 Jan 13;10(1): [PMID: 31941014]
  137. Animals (Basel). 2021 Feb 27;11(3): [PMID: 33673472]

Grants

  1. 2021YFD1300100/National Key R&D Program of China
  2. 2023ZD04069/STI 2030-Major Projects
  3. JBGS[2021]109/"JBGS" Project of Seed Industry Revitalization in Jiangsu Province
  4. AB21220005/Guangxi Key R&D Program

Word Cloud

Created with Highcharts 10.0.0heatchickensgeneticchickenbreedspoultryreviewtolerancehotdevelopmentstresscharacteristicsconditionsusedcurrentproductiondomesticationresultedvariousbreedingtraitsvaluablealsoarticleGWASQTLClimatechangeposessignificantthreatindustryespeciallyclimatesadverselyaffectgrowthproductivityliteratureevaluatesevolutionarybackgroundspecificcanhelpcopenaturalselectionhumaninterventionsinfluencedsystemRedjunglefowldistinctdifferencespastyearsdeliberatedesirablemeateggqualityemergenceeconomicallyHoweverselectivecauseddecreasediversitymakingsusceptibleenvironmentalstressorslikeConsequentlycurrentlyusemaypossesslimitedabilityadaptchallengingextremefocusesevaluatingpotentialgenespathwaysresponsibleincludingshockresponseantioxidantdefensesystemsimmunefunctioncellularhomeostasiswilldiscussphysiologicalbehavioralresponsesvarietiesexhibitresistancenakedneckdwarfdifferentindigenousintendsgenomicfindingsrelatedmethodsgenome-wideassociationstudyquantitativetraitlocimappingofferinginsightssustainabilityfaceglobalwarmingExploringEvolutionaryAdaptationsGenomicAdvancementsImproveHeatToleranceChickens

Similar Articles

Cited By