Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors.

Sheng Li, Lin Gao, Changjian Liu, Haihong Guo, Junsheng Yu
Author Information
  1. Sheng Li: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China. ORCID
  2. Lin Gao: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
  3. Changjian Liu: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
  4. Haihong Guo: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
  5. Junsheng Yu: State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China. ORCID

Abstract

Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.

Keywords

References

  1. Curr Opin Neurobiol. 2011 Apr;21(2):269-74 [PMID: 21353526]
  2. Nat Commun. 2014 Jul 31;5:4564 [PMID: 25078759]
  3. Nat Nanotechnol. 2020 Jul;15(7):517-528 [PMID: 32123381]
  4. Curr Opin Neurobiol. 2010 Jun;20(3):288-95 [PMID: 20493680]
  5. Adv Sci (Weinh). 2021 Mar 08;8(10):2004645 [PMID: 34026457]
  6. ACS Nano. 2022 Feb 22;16(2):2282-2291 [PMID: 35083912]
  7. Nat Rev Neurosci. 2014 Apr;15(4):250-63 [PMID: 24619342]
  8. Biophys J. 1996 Dec;71(6):3013-21 [PMID: 8968572]
  9. Adv Mater. 2019 Dec;31(49):e1902761 [PMID: 31550405]
  10. Adv Sci (Weinh). 2023 Jul;10(19):e2300659 [PMID: 37189211]
  11. Curr Opin Neurobiol. 2021 Dec;71:52-59 [PMID: 34600187]
  12. J Mater Chem B. 2016 Aug 7;4(29):4952-4968 [PMID: 32264022]
  13. Adv Mater. 2023 Oct;35(43):e2204904 [PMID: 35952355]
  14. Biochim Biophys Acta. 2004 Mar 23;1662(1-2):113-37 [PMID: 15033583]
  15. Small. 2018 May;14(19):e1800527 [PMID: 29655263]
  16. Nat Commun. 2017 May 17;8:15448 [PMID: 28513627]
  17. Mater Horiz. 2023 Oct 2;10(10):4213-4223 [PMID: 37477499]
  18. Curr Neuropharmacol. 2019;17(9):891-911 [PMID: 30520376]
  19. Proc Natl Acad Sci U S A. 2021 Aug 10;118(32): [PMID: 34341108]
  20. Nat Rev Neurosci. 2011 Mar;12(3):139-53 [PMID: 21304548]
  21. Neuron. 2013 Oct 30;80(3):658-74 [PMID: 24183018]
  22. J Neurophysiol. 2007 May;97(5):3155-64 [PMID: 17344377]
  23. Neuron. 2012 Sep 6;75(5):762-77 [PMID: 22958818]
  24. Exploration (Beijing). 2023 Nov 20;4(1):20220162 [PMID: 38854486]
  25. Nat Commun. 2013;4:2133 [PMID: 23851620]
  26. Small. 2021 Sep;17(38):e2103837 [PMID: 34418276]
  27. Nat Commun. 2020 Sep 14;11(1):4602 [PMID: 32929071]
  28. Nat Rev Neurosci. 2021 Sep;22(9):521-537 [PMID: 34312536]
  29. Nat Commun. 2022 Feb 22;13(1):901 [PMID: 35194026]
  30. Nat Rev Neurosci. 2017 Aug;18(8):485-497 [PMID: 28655883]
  31. Adv Mater. 2013 Apr 4;25(13):1822-46 [PMID: 23203564]
  32. PLoS One. 2012;7(6):e39572 [PMID: 22768092]
  33. Nature. 1993 Jan 7;361(6407):31-9 [PMID: 8421494]
  34. Nat Rev Methods Primers. 2021;1: [PMID: 35475166]
  35. Neuron. 2017 May 3;94(3):666-676.e9 [PMID: 28434802]
  36. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  37. J Cell Biol. 2021 Jul 5;220(7): [PMID: 34086051]
  38. Neuron. 2020 Sep 23;107(6):1048-1070 [PMID: 32970997]
  39. Angew Chem Int Ed Engl. 2023 Feb 1;62(6):e202213733 [PMID: 36418239]
  40. Nat Commun. 2017 Nov 24;8(1):1767 [PMID: 29176599]
  41. Adv Mater. 2024 Jun 27;:e2403444 [PMID: 38934554]
  42. Neuron. 2011 Oct 20;72(2):231-43 [PMID: 22017986]
  43. Nat Mater. 2023 Feb;22(2):242-248 [PMID: 36635590]
  44. Adv Mater. 2020 Apr;32(15):e1903558 [PMID: 31559670]
  45. Nat Mater. 2019 Feb;18(2):141-148 [PMID: 30559410]
  46. Adv Mater. 2016 Nov;28(44):9722-9728 [PMID: 27717052]
  47. Nat Commun. 2023 Oct 11;14(1):6385 [PMID: 37821427]
  48. Nat Neurosci. 2000 Nov;3 Suppl:1165 [PMID: 11127828]
  49. J Membr Biol. 2013 Jan;246(1):75-90 [PMID: 23262466]
  50. Adv Mater. 2017 Jul;29(25): [PMID: 28582588]
  51. Bull Math Biol. 1990;52(1-2):25-71; discussion 5-23 [PMID: 2185861]
  52. Annu Rev Physiol. 2002;64:355-405 [PMID: 11826273]
  53. Adv Mater. 2024 Jun;36(24):e2312484 [PMID: 38501916]
  54. Nat Commun. 2024 May 28;15(1):4534 [PMID: 38806482]
  55. Sci Adv. 2016 Jun 17;2(6):e1501326 [PMID: 27386556]
  56. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]
  57. J Neurochem. 2016 Dec;139(6):973-996 [PMID: 27241695]
  58. ACS Appl Mater Interfaces. 2018 Aug 8;10(31):25943-25948 [PMID: 30040376]
  59. ACS Nano. 2021 Mar 23;15(3):3875-3899 [PMID: 33507725]
  60. Nat Commun. 2022 Nov 17;13(1):7018 [PMID: 36384960]
  61. Microsyst Nanoeng. 2023 Feb 17;9:16 [PMID: 36817330]
  62. Nat Commun. 2024 Jun 24;15(1):5350 [PMID: 38914568]
  63. Curr Opin Neurobiol. 2014 Dec;29:48-56 [PMID: 24907657]
  64. Nanomicro Lett. 2023 May 24;15(1):133 [PMID: 37221281]
  65. Nat Electron. 2020;3(7): [PMID: 33367204]
  66. Small. 2023 May;19(18):e2205395 [PMID: 36748849]
  67. ACS Nano. 2024 Jun 4;18(22):14457-14468 [PMID: 38764188]
  68. Nat Mater. 2023 Oct;22(10):1227-1235 [PMID: 37429941]
  69. Nat Commun. 2023 Feb 14;14(1):821 [PMID: 36788242]
  70. Nanoscale. 2024 Jun 27;16(25):11928-11958 [PMID: 38847091]
  71. WIREs Mech Dis. 2022 May;14(3):e1547 [PMID: 34850604]
  72. Adv Mater. 2018 Mar;30(9): [PMID: 29318659]
  73. Sci Adv. 2021 Nov 26;7(48):eabj4801 [PMID: 34818038]
  74. Nat Mater. 2020 Sep;19(9):969-973 [PMID: 32541935]
  75. Adv Mater. 2018 Feb;30(5): [PMID: 29266473]
  76. Neuron. 2017 May 3;94(3):447-464 [PMID: 28472650]
  77. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):26169-26175 [PMID: 27608136]
  78. Science. 2023 May 19;380(6646):735-742 [PMID: 37200416]
  79. Nature. 2022 Apr;604(7905):255-260 [PMID: 35418630]
  80. Acc Chem Res. 2019 Apr 16;52(4):964-974 [PMID: 30896916]
  81. Neurosci Biobehav Rev. 2014 May;42:148-56 [PMID: 24589492]

Grants

  1. U21A20492/National Natural Science Foundation of China
  2. 62275041/National Natural Science Foundation of China
  3. 2024YFHZ0354/Sichuan Science and Technology Program

MeSH Term

Biomimetics
Transistors, Electronic
Electrolytes
Humans
Neural Networks, Computer
Biosensing Techniques
Robotics
Biomimetic Materials

Chemicals

Electrolytes

Word Cloud

Created with Highcharts 10.0.0neuromorphicsystemssensingneuralEGTssensoryBiomimeticbiologicalnetworksfieldartificialreviewtransistorssensorsfuturebiomimeticviaintegratedtechnologiesinspiredstructurefunctionrepresentmajoradvancementtechnologyintelligencepaperfocusesdevelopmentapplicationelectrolytegatedcorecomponentssynapsesneurosofferuniqueadvantagesincludinglowoperatingvoltagehightransconductancebiocompatibilitymakingidealintegratinginterfacingtissuesmimickingprocessesMajoradvancesuseapplicationstactilevisualchemicalmultimodecarefullydiscussedFurthermorechallengesdirectionsexploredhighlightingpotentialEGT-basedrevolutionizeprostheticsroboticshuman-machineinterfacescomprehensiveanalysislatestresearchintendedprovidedetailedunderstandingcurrentstatusprospectsEGTNeuromorphicSensorySystemElectrolyteGatedTransistorselectrolyte-gatedsystem

Similar Articles

Cited By