Mastering of analytical methods for accurate quantitative determinations of enantiomeric excess is a crucial aspect in asymmetric catalysis, chiral synthesis, and pharmaceutical applications. In this context, the phenomenon of Self-Induced Diastereomeric Anisochronism (SIDA) can be exploited in NMR spectroscopy for accurate determinations of enantiomeric composition, without using a chiral auxiliary that could interfere with the spectroscopic investigation. This phenomenon can be particularly useful for improving the quantitative analysis of mixtures with low enantiomeric excesses, where direct integration of signals can be tricky. Here, we describe a novel analysis protocol to correctly determine the enantiomeric composition of scalemic mixtures and investigate the thermodynamic and stereochemical features at the basis of SIDA. Dipeptide derivatives were chosen as substrates for this study, given their central role in drug design. By integrating the experiments with a conformational stochastic search that includes entropic contributions, we provide valuable information on the dimerization thermodynamics, the nature of non-covalent interactions leading to self-association, and the differences in the chemical environment responsible for the anisochronism, highlighting the importance of different stereochemical arrangement and tight association for the distinction between homochiral and heterochiral adducts. An important role played by the counterion was pointed out by computational studies.
Z. Szakács, Z. Sánta, A. Lomoschitz, C. Szántay, TrAC Trends Anal. Chem. 2018, 109, 180–197.
F. Aiello, G. Uccello Barretta, F. Balzano, F. Spiaggia, Molecules 2023, 28, 6854.
V. Dašková, D. Padín, B. L. Feringa, J. Am. Chem. Soc. 2022, 144, 23603–23613.
F. Balzano, G. Uccello-Barretta, F. Aiello, in Chiral Anal. Second Ed (Ed: P. L. Polavarapu), Elsevier, Amsterdam 2018, 367–427.
G. Uccello Barretta, T. J. Wenzel, F. Balzano, in Compr. Chirality Second Ed. (Ed: J. Cossy), Academic Press, Oxford 2024, 560–592.
J. Han, O. Kitagawa, A. Wzorek, K. D. Klika, V. A. Soloshonok, Chem. Sci. 2018, 9, 1718–1739.
J. Han, A. Wzorek, K. D. Klika, V. A. Soloshonok, in Late-Stage Fluorination Bioact. Mol. Biol.-Relev. Substrates (Ed.: A. Postigo), Elsevier, Amsterdam 2019, 321–355.
J. Han, A. Wzorek, M. Kwiatkowska, V. A. Soloshonok, K. D. Klika, Amino Acids 2019, 51, 865–889.
M. Mikoajczyk, R. Urawiski, P. Kiebasiski, M. W. Wieczorek, J. Baszczyk, W. R. Majzner, Synthesis 1997, 1997, 356–365.
S. K. Ghosh, J. Pept. Res. Off. J. Am. Pept. Soc. 1999, 53, 261–274.
Z. Xu, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137, 6712–6724.
A. B. Ouryupin, M. I. Kadyko, P. V. Petrovskii, E. I. Fedin, Chirality 1994, 6, 1–4.
A. B. Ouryupin, M. I. Kadyko, P. V. Petrovskii, E. I. Fedin, A. Okruszek, R. Kinas, W. J. Stec, Tetrahedron: Asymmetry 1995, 6, 1813–1824.
K. D. Klika, M. Budovská, P. Kutschy, Tetrahedron: Asymmetry 2010, 21, 647–658.
T. Williams, R. G. Pitcher, P. Bommer, J. Gutzwiller, M. Uskokovic, J. Am. Chem. Soc. 1969, 91, 1871–1872.
M. T. Cung, M. Marraud, J. Neel, Biopolymers 1977, 16, 715–729.
M. Kwiatkowska, A. Wzorek, A. Kolbus, M. Urbaniak, J. Han, V. A. Soloshonok, K. D. Klika, Symmetry 2021, 13, 543.
V. Nieminen, D. Y. Murzin, K. D. Klika, Org. Biomol. Chem. 2009, 7, 537–542.
G. Storch, M. Haas, O. Trapp, Chem. Eur. J. 2017, 23, 5414–5418.
J.-M. Menke, O. Trapp, Chem. Eur. J. 2024, 30, e202400623.
L. Adler-Abramovich, E. Gazit, Chem. Soc. Rev. 2014, 43, 6881–6893.
M. S. Levine, M. Ghosh, M. Hesser, N. Hennessy, D. M. DiGuiseppi, L. Adler-Abramovich, R. Schweitzer-Stenner, Soft Matter 2020, 16, 7860–7868.
L. Li, L. Xie, R. Zheng, R. Sun, Front. Chem. 2021, 9, 739791–739805.
K. Pandurangan, B. Roy, K. Rajasekhar, Y. V. Suseela, P. Nagendra, A. Chaturvedi, U. R. Satwik, N. A. Murugan, U. Ramamurty, T. Govindaraju, ACS Appl. Bio Mater. 2020, 3, 3413–3422.
D. Berillo, A. Yeskendir, Z. Zharkinbekov, K. Raziyeva, A. Saparov, Medicina (Mex.) 2021, 57, 1209.
G. Colombo, P. Soto, E. Gazit, Trends Biotechnol. 2007, 25, 211–218.
S. Santos, I. Torcato, M. A. R. B. Castanho, Pept. Sci. 2012, 98, 288–293.
J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589–5604.
P. Kumaraswamy, R. Lakshmanan, S. Sethuraman, U. M. Krishnan, Soft Matter 2011, 7, 2744–2754.
L. Majumder, K. Bera, K. Khamaru, U. Pal, N. C. Maiti, B. Banerji, J. Mol. Struct. 2022, 1266, 133455.
N. E. Zanchi, H. Nicastro, A. H. Lancha, Nutr. Metab. 2008, 5, 20.
S. Chatterjee, A. Mavani, J. Bhatttacharyya, in Nutr. Funct. Foods Boost. Dig. Metab. Immune Health (Eds.: D. Bagchi, S. E. Ohia), Academic Press, Oxford 2022, 3–14.
P. E. V. Paul, V. Sangeetha, R. G. Deepika, in Recent Dev. Appl. Microbiol. Biochem. (Ed.: V. Buddolla), Academic Press, Oxford 2019, 107–125.
G. Betzenbichler, L. Huber, S. Kräh, M.-L. K. Morkos, A. F. Siegle, O. Trapp, Chirality 2022, 34, 732–759.
R. M. de Figueiredo, J.-S. Suppo, C. Midrier, J.-M. Campagne, Adv. Synth. Catal. 2017, 359, 1963–1968.
J.-S. Suppo, G. Subra, M. Bergès, R. M. de Figueiredo, J.-M. Campagne, Angew. Chem. Int. Ed. 2014, 53, 5389–5393.
E. Tosi, J.-M. Campagne, R. M. de Figueiredo, J. Org. Chem. 2022, 87, 12148–12163.
L. S. Lin, T. Lanza, S. E. de Laszlo, Q. Truong, T. Kamenecka, W. K. Hagmann, Tetrahedron Lett. 2000, 41, 7013–7016.
R. Evans, G. Dal Poggetto, M. Nilsson, G. A. Morris, Anal. Chem. 2018, 90, 3987–3994.
R. Evans, Prog. Nucl. Magn. Reson. Spectrosc. 2020, 117, 33–69.
M. I. Kabachnik, T. A. Mastryukova, E. I. Fedin, M. S. Vaisberg, L. L. Morozov, P. V. Petrovskii, A. E. Shipov, Russ. Chem. Rev. 1978, 47, 821.
D. Gut, A. Rudi, J. Kopilov, I. Goldberg, M. Kol, J. Am. Chem. Soc. 2002, 124, 5449–5456.
J. S. Chen, R. B. Shirts, J. Phys. Chem. 1985, 89, 1643–1646.
V. R. Mundlapati, S. Gautam, D. K. Sahoo, A. Ghosh, H. S. Biswal, J. Phys. Chem. Lett. 2017, 8, 4573–4579.
M. Karplus, H. J. Kolker, J. Chem. Phys. 2004, 39, 1493–1506.
P. Pracht, S. Grimme, Chem. Sci. 2021, 12, 6551–6568.
G. Han, M. Tamaki, V. J. Hruby, J. Pept. Res. 2001, 58, 338–341.
C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, WIREs Comput. Mol. Sci. 2021, 11, e1493.
S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989–2009.
C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652–1671.
P. Pracht, E. Caldeweyher, S. Ehlert, S. Grimme, 2019, DOI: 10.26434/chemrxiv.8326202.v1.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087–1092.
W. K. Hastings, Biometrika 1970, 57, 97–109.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput. 2021, 17, 4250–4261.
M. Garcia-Ratés, F. Neese, J. Comput. Chem. 2019, 40, 1816–1828.
A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K. W. Jacobsen, J. Phys. Condens. Matter 2017, 29, 273002.
S. R. Bahn, K. W. Jacobsen, Comput. Sci. Eng. 2002, 4, 56–66.
R. W. Pastor, in Mol. Dyn. Liq. Cryst. (Eds: G. R. Luckhurst, C. A. Veracini), Springer Netherlands, Dordrecht 1994, 85–138.
M. Bonomi, G. Bussi, C. Camilloni, G. A. Tribello, P. Banáš, A. Barducci, M. Bernetti, P. G. Bolhuis, S. Bottaro, D. Branduardi, R. Capelli, P. Carloni, M. Ceriotti, A. Cesari, H. Chen, W. Chen, F. Colizzi, S. De, M. De La Pierre, D. Donadio, V. Drobot, B. Ensing, A. L. Ferguson, M. Filizola, J. S. Fraser, H. Fu, P. Gasparotto, F. L. Gervasio, F. Giberti, A. Gil-Ley, T. Giorgino, G. T. Heller, G. M. Hocky, M. Iannuzzi, M. Invernizzi, K. E. Jelfs, A. Jussupow, E. Kirilin, A. Laio, V. Limongelli, K. Lindorff-Larsen, T. Löhr, F. Marinelli, L. Martin-Samos, M. Masetti, R. Meyer, A. Michaelides, C. Molteni, T. Morishita, M. Nava, C. Paissoni, E. Papaleo, M. Parrinello, J. Pfaendtner, P. Piaggi, G. Piccini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi, D. Quigley, P. Raiteri, S. Raniolo, J. Rydzewski, M. Salvalaglio, G. C. Sosso, V. Spiwok, J. Šponer, D. W. H. Swenson, P. Tiwary, O. Valsson, M. Vendruscolo, G. A. Voth, A. White, Nat. Methods 2019, 16, 670–673.
G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Comput. Phys. Commun. 2014, 185, 604–613.
M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R. A. Broglia, M. Parrinello, Comput. Phys. Commun. 2009, 180, 1961–1972.
A. Barducci, Phys. Rev. Lett. 2008, 100, 020603.
L. Sementa, 2024, DOI: 10.5281/zenodo.12198517.
Grants
PRA_2022-2023/Università di Pisa
ANR-18-CE07-0038-01/Agence Nationale de la Recherche