Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction.

Ghita Guessous, Lauren Blake, Anthony Bui, Yelim Woo, Gabriel Manzanarez
Author Information
  1. Ghita Guessous: Department of Physics, University of California at San Diego, La Jolla, California 92092, United States. ORCID
  2. Lauren Blake: Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States.
  3. Anthony Bui: Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States.
  4. Yelim Woo: Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States.
  5. Gabriel Manzanarez: Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States.

Abstract

The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.

Keywords

References

  1. Nat Chem Biol. 2015 May;11(5):309-15 [PMID: 25885958]
  2. Chem Rev. 2023 Mar 8;123(5):2049-2111 [PMID: 36692900]
  3. J Exp Biol. 2010 Oct 15;213(Pt 20):3505-14 [PMID: 20889831]
  4. Microsc Microanal. 2018 Feb;24(1):17-28 [PMID: 29380711]
  5. Curr Opin Biotechnol. 2012 Dec;23(6):957-64 [PMID: 22521455]
  6. Int J Biol Macromol. 2013 May;56:156-61 [PMID: 23403024]
  7. Int J Mol Sci. 2023 Jan 26;24(3): [PMID: 36768727]
  8. Appl Microbiol Biotechnol. 1997 Jan;47(1):33-9 [PMID: 9035408]
  9. Int J Biol Macromol. 2022 Dec 31;223(Pt A):1015-1023 [PMID: 36375671]
  10. ACS Cent Sci. 2021 Oct 27;7(10):1736-1750 [PMID: 34729417]
  11. ACS Biomater Sci Eng. 2015 Jul 13;1(7):577-584 [PMID: 27064312]
  12. Curr Biol. 2004 Nov 23;14(22):2070-4 [PMID: 15556872]
  13. Nat Commun. 2013;4:2815 [PMID: 24240554]
  14. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10266-71 [PMID: 12149440]
  15. Front Bioeng Biotechnol. 2022 Mar 08;10:835637 [PMID: 35350182]
  16. ACS Macro Lett. 2018 Sep 18;7(9):1120-1125 [PMID: 30258700]
  17. Acta Biomater. 2019 Nov;99:236-246 [PMID: 31505301]
  18. Appl Environ Microbiol. 2008 Feb;74(4):1124-35 [PMID: 18156341]
  19. Nano Lett. 2023 Jun 28;23(12):5836-5841 [PMID: 37084706]
  20. Phys Rev E. 2022 Mar;105(3-1):034401 [PMID: 35428095]
  21. PeerJ. 2021 Nov 16;9:e12497 [PMID: 34820206]
  22. Transgenic Res. 2013 Apr;22(2):369-77 [PMID: 23001519]
  23. Adv Mater. 2015 Apr 1;27(13):2189-94 [PMID: 25689835]
  24. PLoS One. 2012;7(12):e52293 [PMID: 23251707]
  25. Nat Chem Biol. 2017 Mar;13(3):262-264 [PMID: 28068309]
  26. J Biol Chem. 1994 Mar 4;269(9):6661-3 [PMID: 8120021]
  27. Biomacromolecules. 2009 Feb 9;10(2):229-36 [PMID: 19128057]
  28. Mol Biol Rep. 2008 Sep;35(3):329-35 [PMID: 17525867]
  29. Nat Biotechnol. 2001 Jun;19(6):573-7 [PMID: 11385464]
  30. Int J Mol Sci. 2016 Dec 02;17(12): [PMID: 27918448]
  31. Sci Rep. 2019 Apr 18;9(1):6291 [PMID: 31000733]
  32. Science. 2000 Feb 25;287(5457):1477-9 [PMID: 10688794]
  33. Appl Biochem Biotechnol. 2007 Aug;142(2):105-24 [PMID: 18025573]
  34. Biomacromolecules. 2014 May 12;15(5):1696-706 [PMID: 24678858]
  35. Prion. 2008 Oct-Dec;2(4):154-61 [PMID: 19221522]
  36. Science. 2008 Mar 28;319(5871):1816-9 [PMID: 18369144]
  37. Signal Transduct Target Ther. 2023 May 11;8(1):199 [PMID: 37169742]
  38. Front Bioeng Biotechnol. 2023 Aug 08;11:1238917 [PMID: 37614627]
  39. Biopolymers. 2012 Jun;97(6):355-61 [PMID: 22057429]
  40. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11507-11512 [PMID: 30348773]
  41. Macromol Biosci. 2007 Apr 10;7(4):401-9 [PMID: 17429812]
  42. Science. 1996 Jan 5;271(5245):84-7 [PMID: 8539605]
  43. Nat Genet. 2017 Jun;49(6):895-903 [PMID: 28459453]
  44. QJM. 2004 Nov;97(11):705-16 [PMID: 15496527]
  45. Brief Bioinform. 2014 Jul;15(4):582-91 [PMID: 23418055]
  46. Nano Lett. 2011 Nov 9;11(11):5038-46 [PMID: 21967633]
  47. Sci Adv. 2019 Sep 13;5(9):eaaw2541 [PMID: 31548982]
  48. Biophys Physicobiol. 2023 Mar 10;20(1):e200014 [PMID: 37448593]
  49. Biomacromolecules. 2015 Oct 12;16(10):3373-80 [PMID: 26322742]
  50. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):923-8 [PMID: 22215590]
  51. Commun Biol. 2020 Jul 8;3(1):357 [PMID: 32641733]
  52. Anim Biotechnol. 2007;18(1):1-12 [PMID: 17364439]
  53. Adv Protein Chem. 2005;70:1-10 [PMID: 15837511]
  54. Materials (Basel). 2019 Dec 06;12(24): [PMID: 31817786]
  55. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148640]
  56. Biomacromolecules. 2007 Sep;8(9):2768-73 [PMID: 17696395]
  57. Science. 1996 Apr 5;272(5258):112-5 [PMID: 8600519]
  58. Nature. 2001 Mar 29;410(6828):541-8 [PMID: 11279484]
  59. Int J Biochem Cell Biol. 1999 Feb;31(2):261-72 [PMID: 10216959]
  60. Annu Rev Biochem. 2009;78:929-58 [PMID: 19344236]
  61. Prion. 2008 Oct-Dec;2(4):145-53 [PMID: 19221523]
  62. J Vis Exp. 2012 Jul 18;(65):e4191 [PMID: 22847722]
  63. Metab Eng. 2022 Mar;70:102-114 [PMID: 35065259]
  64. Int J Biol Macromol. 2020 Jul 1;154:765-772 [PMID: 32169447]
  65. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14059-63 [PMID: 20660779]
  66. Nat Biotechnol. 2004 Nov;22(11):1393-8 [PMID: 15529164]
  67. Macromol Biosci. 2013 Feb;13(2):256-64 [PMID: 23212989]
  68. J Mol Evol. 2006 Jul;63(1):42-53 [PMID: 16755355]
  69. Transgenic Res. 2005 Jun;14(3):313-24 [PMID: 16145839]
  70. Plant Sci. 2012 Mar;184:83-101 [PMID: 22284713]
  71. Sci Adv. 2022 Oct 14;8(41):eabo6043 [PMID: 36223455]
  72. Biotechnol J. 2013 Oct;8(10):1183-92 [PMID: 24092675]
  73. Biomacromolecules. 2018 Sep 10;19(9):3853-3860 [PMID: 30080972]
  74. Nat Commun. 2014;5:3254 [PMID: 24510122]
  75. Science. 2001 Mar 30;291(5513):2603-5 [PMID: 11283372]
  76. Nat Mater. 2022 Apr;21(4):390-397 [PMID: 35361951]
  77. Front Bioeng Biotechnol. 2023 Sep 06;11:1252499 [PMID: 37744248]
  78. J Biotechnol. 2000 Aug;74(2):105-19 [PMID: 11763501]
  79. Chem Rev. 2023 Mar 8;123(5):1841-1842 [PMID: 36883306]
  80. N Biotechnol. 2018 May 25;42:12-18 [PMID: 29277712]
  81. Nanotechnol Sci Appl. 2008 Aug 8;1:9-16 [PMID: 20657704]
  82. Adv Mater. 2023 Jan;35(4):e2203433 [PMID: 36108274]
  83. Mol Biol (Mosk). 2016 Jan-Feb;50(1):3-9 [PMID: 27028806]
  84. Acta Biomater. 2014 Apr;10(4):1612-26 [PMID: 23962644]
  85. Biomaterials. 2011 Mar;32(8):2233-40 [PMID: 21186052]
  86. PLoS One. 2007 Oct 03;2(10):e998 [PMID: 17912375]
  87. J R Soc Interface. 2021 Feb;18(175):20200907 [PMID: 33530858]
  88. J Funct Biomater. 2023 Aug 19;14(8): [PMID: 37623678]
  89. Biotechnol Adv. 2009 May-Jun;27(3):297-306 [PMID: 19500547]
  90. J Biol Chem. 1992 Sep 25;267(27):19320-4 [PMID: 1527052]
  91. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092-101 [PMID: 5244734]
  92. Genes (Basel). 2019 Jun 03;10(6): [PMID: 31163680]
  93. Nature. 2002 Aug 15;418(6899):741 [PMID: 12181556]
  94. BMC Biotechnol. 2020 Jul 10;20(1):37 [PMID: 32650749]
  95. Eng Biol. 2020 Mar 16;4(1):1-6 [PMID: 36970229]
  96. Commun Biol. 2018 Jul 2;1:86 [PMID: 30271967]
  97. Biomacromolecules. 2011 Jul 11;12(7):2488-95 [PMID: 21612299]
  98. Chem Commun (Camb). 2010 Sep 28;46(36):6714-6 [PMID: 20733981]
  99. Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8757-8762 [PMID: 30082397]
  100. Trends Biotechnol. 2008 May;26(5):244-51 [PMID: 18367277]
  101. Science. 2002 Jan 18;295(5554):472-6 [PMID: 11799236]
  102. J Biol Chem. 2010 Dec 3;285(49):38115-24 [PMID: 20870720]
  103. Biomacromolecules. 2019 Jun 10;20(6):2252-2264 [PMID: 31059233]
  104. J Plant Biol. 2016;59(6):559-568 [PMID: 32288513]
  105. Int J Mol Sci. 2024 Mar 21;25(6): [PMID: 38542528]
  106. Biotechnol J. 2012 May;7(5):620-34 [PMID: 22442034]
  107. Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2816-20 [PMID: 25640578]
  108. Chem Soc Rev. 2010 Sep;39(9):3371-9 [PMID: 20449520]
  109. Molecules. 2021 Mar 23;26(6): [PMID: 33806736]
  110. Mol Syst Biol. 2009;5:309 [PMID: 19756048]
  111. J Cosmet Dermatol. 2018 Feb;17(1):20-26 [PMID: 29144022]
  112. Plant Biotechnol J. 2004 Sep;2(5):431-8 [PMID: 17168889]
  113. Metab Eng Commun. 2023 Feb 03;16:e00219 [PMID: 36825067]
  114. Subcell Biochem. 2017;82:1-33 [PMID: 28101857]
  115. Microb Cell Fact. 2010 Mar 19;9:18 [PMID: 20298615]
  116. Proc Natl Acad Sci U S A. 2021 Aug 3;118(31): [PMID: 34312234]
  117. Nat Commun. 2020 Dec 11;11(1):6379 [PMID: 33311504]
  118. Chem Rev. 2006 Feb;106(2):753-66 [PMID: 16464023]
  119. Chem Commun (Camb). 2019 Apr 16;55(32):4687-4690 [PMID: 30938741]
  120. Microb Biotechnol. 2013 Nov;6(6):651-63 [PMID: 24119078]
  121. Methods Mol Biol. 2022;2480:313-333 [PMID: 35616870]
  122. Adv Sci (Weinh). 2022 Feb;9(5):e2103965 [PMID: 34927397]
  123. Biotechnol Adv. 2012 Sep-Oct;30(5):1102-7 [PMID: 21968145]
  124. Chemosphere. 2022 Apr;293:133464 [PMID: 34974043]
  125. Angew Chem Int Ed Engl. 2011 Jan 3;50(1):310-3 [PMID: 21064058]
  126. PLoS One. 2007 Jun 13;2(6):e514 [PMID: 17565367]
  127. ACS Biomater Sci Eng. 2017 Mar 13;3(3):226-237 [PMID: 33465923]
  128. Mol Biol (Mosk). 2003 Jul-Aug;37(4):654-62 [PMID: 12942639]
  129. Sci Rep. 2019 Mar 22;9(1):5032 [PMID: 30902998]
  130. Metab Eng. 2023 May;77:231-241 [PMID: 37024071]
  131. Adv Appl Microbiol. 2013;82:115-53 [PMID: 23415154]
  132. J Proteomics. 2014 Jun 13;105:174-85 [PMID: 24434585]
  133. Int J Mol Sci. 2020 Feb 02;21(3): [PMID: 32024292]
  134. Mater Today Bio. 2021 May 26;11:100115 [PMID: 34195591]
  135. PLoS Biol. 2014 Aug 05;12(8):e1001921 [PMID: 25093327]
  136. Comp Biochem Physiol B Biochem Mol Biol. 2013 Mar;164(3):151-8 [PMID: 23262065]
  137. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6590-5 [PMID: 18445655]
  138. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7120-4 [PMID: 2402494]
  139. Biomacromolecules. 2006 Apr;7(4):1210-4 [PMID: 16602740]
  140. Dev Biol. 1990 Jul;140(1):215-20 [PMID: 2358120]
  141. Mater Today Bio. 2022 Dec 15;18:100518 [PMID: 36636637]
  142. Scanning. 2000 Jan-Feb;22(1):12-5 [PMID: 10768384]
  143. Protein Sci. 2009 May;18(5):1012-22 [PMID: 19388023]
  144. J Colloid Interface Sci. 2020 Feb 15;560:149-160 [PMID: 31670097]
  145. Biomacromolecules. 2021 Feb 8;22(2):993-1000 [PMID: 33481568]
  146. Biochim Biophys Acta. 2016 Oct;1864(10):1444-54 [PMID: 27208434]
  147. Trends Biotechnol. 2021 Jun;39(6):560-573 [PMID: 33051051]
  148. Dokl Biochem Biophys. 2011 Nov-Dec;441:276-9 [PMID: 22218954]
  149. Appl Microbiol Biotechnol. 1997 Jan;47(1):23-32 [PMID: 9035407]
  150. Front Plant Sci. 2016 Jan 28;7:6 [PMID: 26858734]
  151. Insect Biochem Mol Biol. 2017 Feb;81:80-90 [PMID: 28057598]
  152. Acta Biomater. 2020 Oct 1;115:210-219 [PMID: 32798722]
  153. Sci Rep. 2016 Jun 09;6:27573 [PMID: 27279149]
  154. FEMS Yeast Res. 2012 Aug;12(5):491-510 [PMID: 22533807]
  155. Front Plant Sci. 2014 Sep 23;5:487 [PMID: 25295048]
  156. Biochimie. 1998 Jan;80(1):19-31 [PMID: 9587659]
  157. Microb Cell Fact. 2024 Jan 26;23(1):35 [PMID: 38279170]
  158. Biomacromolecules. 2015 Apr 13;16(4):1418-25 [PMID: 25789668]
  159. Biochem Soc Trans. 2021 Apr 30;49(2):953-964 [PMID: 33729443]
  160. Biomacromolecules. 2006 Jun;7(6):1790-5 [PMID: 16768399]
  161. Anim Biotechnol. 2021 Oct;32(5):616-626 [PMID: 32174217]

MeSH Term

Spiders
Animals
Silk
Recombinant Proteins
Humans

Chemicals

Silk
Recombinant Proteins

Word Cloud

Created with Highcharts 10.0.0spidersilkindustryapplicationstechnicalmaterialnaturemanymaterialsproductionproducthighlightstillhigh-performancebusinessconsiderationsstrategiesimportancebioproductionremarkablepropertieshightoughnesstensilestrengthcombinedlowdensitymakehighlysought-aftermyriadadditionbiologicalmakespromisingpotentiallysustainablealternativetoxicpetrochemical-derivedThereforeinterestheterologousproteinsgreatlyincreasedpastdecadesmakingrecombinantimportantfrontierbiomanufacturingresulteddiversitypotentialhostorganismslargespacesequencedesignvarietydownstreamprocessingtechniquesadvancesaspectswellwhitespacesthereinripeinvestigationdiscoveryAdditionallylandscapingpatentanalysesinterviewsKeyOpinionLeadershelpdefineresearchlandscapesparticularfoundthoughtextilesdominatedearlyproductsproposedcompaniesversatileopenedpossibilitiesindustriesautomotivebiomedicaltherapiescontinuingenthusiasmimbuedscientistsinvestorsalikeremainunsolvedcandemocratizedprovideinsightsovercominginitialhurdlescollaborationacademiapolicymakersLinkingmarketentryhighlightsholisticapproacheffectivescale-upcommercialviabilityDisentanglingWeb:InterdisciplinaryReviewPotentialFeasibilitySpiderSilkBioproductionfiberlandscapeproteinbiomaterials

Similar Articles

Cited By