Insertable Glucose Sensor Using a Compact and Cost-Effective Phosphorescence Lifetime Imager and Machine Learning.

Artem Goncharov, Zoltan Gorocs, Ridhi Pradhan, Brian Ko, Ajmal Ajmal, Andres Rodriguez, David Baum, Marcell Veszpremi, Xilin Yang, Maxime Pindrys, Tianle Zheng, Oliver Wang, Jessica C Ramella-Roman, Michael J McShane, Aydogan Ozcan
Author Information
  1. Artem Goncharov: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  2. Zoltan Gorocs: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  3. Ridhi Pradhan: Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.
  4. Brian Ko: Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.
  5. Ajmal Ajmal: Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States.
  6. Andres Rodriguez: Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States.
  7. David Baum: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  8. Marcell Veszpremi: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  9. Xilin Yang: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  10. Maxime Pindrys: Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States.
  11. Tianle Zheng: Department of Computer Science, University of California, Los Angeles, California 90095, United States.
  12. Oliver Wang: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States.
  13. Jessica C Ramella-Roman: Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States. ORCID
  14. Michael J McShane: Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States. ORCID
  15. Aydogan Ozcan: Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, United States. ORCID

Abstract

Optical continuous glucose monitoring (CGM) systems are emerging for personalized glucose management owing to their lower cost and prolonged durability compared to conventional electrochemical CGMs. Here, we report a computational CGM system, which integrates a biocompatible phosphorescence-based insertable biosensor and a custom-designed phosphorescence lifetime imager (PLI). This compact and cost-effective PLI is designed to capture phosphorescence lifetime images of an insertable sensor through the skin, where the lifetime of the emitted phosphorescence signal is modulated by the local concentration of glucose. Because this phosphorescence signal has a very long lifetime compared to tissue autofluorescence or excitation leakage processes, it completely bypasses these noise sources by measuring the sensor emission over several tens of microseconds after the excitation light is turned off. The lifetime images acquired through the skin are processed by neural network-based models for misalignment-tolerant inference of glucose levels, accurately revealing normal, low (hypoglycemia) and high (hyperglycemia) concentration ranges. Using a 1 mm thick skin phantom mimicking the optical properties of human skin, we performed in vitro testing of the PLI using glucose-spiked samples, yielding 88.8% inference accuracy, also showing resilience to random and unknown misalignments within a lateral distance of ∼4.7 mm with respect to the position of the insertable sensor underneath the skin phantom. Furthermore, the PLI accurately identified larger lateral misalignments beyond 5 mm, prompting user intervention for realignment. The misalignment-resilient glucose concentration inference capability of this compact and cost-effective PLI makes it an appealing wearable diagnostics tool for real-time tracking of glucose and other biomarkers.

Keywords

References

  1. Mikrochim Acta. 2022 Mar 1;189(3):127 [PMID: 35233646]
  2. Analyst. 2021 May 21;146(10):3273-3279 [PMID: 33999074]
  3. J Diabetes Sci Technol. 2015 Jun 17;9(5):985-92 [PMID: 26085565]
  4. Crit Rev Anal Chem. 2023;53(5):1116-1131 [PMID: 34894901]
  5. Diabetes Technol Ther. 2018 Apr;20(4):296-302 [PMID: 29470128]
  6. Diabetes Care. 2017 Jan;40(1):63-68 [PMID: 27815290]
  7. Phys Ther. 2008 Nov;88(11):1254-64 [PMID: 18801858]
  8. Med Devices (Auckl). 2012;5:45-52 [PMID: 23166457]
  9. Nanoscale. 2020 Sep 7;12(33):17538-17544 [PMID: 32812610]
  10. J Diabetes Sci Technol. 2013 Jan 01;7(1):13-23 [PMID: 23439156]
  11. Diabetes Technol Ther. 2019 May;21(5):254-264 [PMID: 31021180]
  12. Microvasc Res. 2019 Jul;124:6-18 [PMID: 30742844]
  13. Lancet Diabetes Endocrinol. 2014 Jan;2(1):56-64 [PMID: 24622669]
  14. Cell Mol Life Sci. 2012 Jun;69(12):2025-39 [PMID: 22249195]
  15. Diabetes Care. 2021 Apr;44(4):969-975 [PMID: 33579715]
  16. Diabetes Care. 2021 Jul;44(7):1641-1646 [PMID: 34099515]
  17. Microsyst Nanoeng. 2023 Jan 1;9:1 [PMID: 36597511]
  18. Biomater Sci. 2022 Feb 1;10(3):614-632 [PMID: 34797359]
  19. Nat Biomed Eng. 2023 Dec;7(12):1541-1555 [PMID: 36658344]
  20. RSC Adv. 2022 Apr 27;12(20):12806-12822 [PMID: 35496334]
  21. Nat Nanotechnol. 2024 Mar;19(3):330-337 [PMID: 37770648]
  22. Sensors (Basel). 2020 Mar 03;20(5): [PMID: 32138291]
  23. Diabetes Technol Ther. 2020 Jan;22(1):48-52 [PMID: 31418587]
  24. Diabetes Res Clin Pract. 2019 Nov;157:107843 [PMID: 31518657]
  25. Biomed Microdevices. 2015 Aug;17(4):73 [PMID: 26141039]
  26. Biosensors (Basel). 2022 Mar 07;12(3): [PMID: 35323438]
  27. Biosensors (Basel). 2023 Jan 14;13(1): [PMID: 36671976]
  28. Anal Biochem. 2002 Nov 15;310(2):191-8 [PMID: 12423638]
  29. Nat Biomed Eng. 2022 Nov;6(11):1214-1224 [PMID: 35534575]
  30. ACS Nano. 2016 Sep 27;10(9):8989-99 [PMID: 27622866]
  31. J Diabetes Sci Technol. 2021 Jan;15(1):167-173 [PMID: 32345047]
  32. ACS Sens. 2019 Feb 22;4(2):379-388 [PMID: 30707572]
  33. Anal Chem. 2011 Dec 1;83(23):9146-52 [PMID: 22007689]
  34. J Mater Chem B. 2023 Feb 22;11(8):1749-1759 [PMID: 36723375]
  35. IEEE Access. 2021;9:103835-103849 [PMID: 34858770]
  36. Diabetes Care. 2020 Nov;43(11):2730-2735 [PMID: 32641372]
  37. Biosensors (Basel). 2023 Jan 23;13(2): [PMID: 36831947]
  38. J Diabetes Sci Technol. 2015 Aug 25;9(5):966-77 [PMID: 26306495]
  39. Chem Rev. 2015 Aug 12;115(15):8001-37 [PMID: 25974371]
  40. Sensors (Basel). 2020 Feb 11;20(4): [PMID: 32053932]
  41. Photochem Photobiol. 2013 Jan-Feb;89(1):227-33 [PMID: 22891856]
  42. Chemistry. 2013 Apr 26;19(18):5654-64 [PMID: 23463688]
  43. Annu Rev Anal Chem (Palo Alto Calif). 2018 Jun 12;11(1):127-146 [PMID: 29490190]
  44. J Diabetes Sci Technol. 2018 May;12(3):562-568 [PMID: 29332423]
  45. Biosensors (Basel). 2017 Jan 22;7(1): [PMID: 28117762]
  46. Sci Adv. 2017 Dec 08;3(12):e1701548 [PMID: 29226243]
  47. IEEE Trans Pattern Anal Mach Intell. 2020 Jul;42(7):1618-1629 [PMID: 32324539]

MeSH Term

Biosensing Techniques
Humans
Machine Learning
Glucose
Blood Glucose
Cost-Benefit Analysis
Luminescent Measurements
Blood Glucose Self-Monitoring

Chemicals

Glucose
Blood Glucose

Word Cloud

Created with Highcharts 10.0.0glucoselifetimephosphorescencePLIskininsertablesensorconcentrationinferencemmcontinuousmonitoringCGMcomparedcompactcost-effectiveimagessignalexcitationneuralnetwork-basedaccuratelyUsingphantommisalignmentslateralOpticalsystemsemergingpersonalizedmanagementowinglowercostprolongeddurabilityconventionalelectrochemicalCGMsreportcomputationalsystemintegratesbiocompatiblephosphorescence-basedbiosensorcustom-designedimagerdesignedcaptureemittedmodulatedlocallongtissueautofluorescenceleakageprocessescompletelybypassesnoisesourcesmeasuringemissionseveraltensmicrosecondslightturnedacquiredprocessedmodelsmisalignment-tolerantlevelsrevealingnormallowhypoglycemiahighhyperglycemiaranges1thickmimickingopticalpropertieshumanperformedvitrotestingusingglucose-spikedsamplesyielding888%accuracyalsoshowingresiliencerandomunknownwithindistance∼47respectpositionunderneathFurthermoreidentifiedlargerbeyond5promptinguserinterventionrealignmentmisalignment-resilientcapabilitymakesappealingwearablediagnosticstoolreal-timetrackingbiomarkersInsertableGlucoseSensorCompactCost-EffectivePhosphorescenceLifetimeImagerMachineLearningdeeplearningbiosensorsmobilereadersensing

Similar Articles

Cited By (1)