Regional thermal variation in a coral reef fish.

Elliott Schmidt, Jennifer M Donelson
Author Information
  1. Elliott Schmidt: College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia. ORCID
  2. Jennifer M Donelson: College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Australia. ORCID

Abstract

How species respond to climate change will depend on the collective response of populations. Intraspecific variation in traits, evolved through genetic adaptation and phenotypic plasticity, can cause thermal performance curves to vary over species' distributions. Intraspecific variation within marine species has received relatively little attention due to the belief that marine systems lack dispersal barriers strong enough to promote locally adapted traits. Here we show that intraspecific variation is present between low- and high-latitude populations of a coral reef damselfish (). Co-gradient variation was observed when examining aerobic physiology across a thermal gradient that reflected mean summer temperatures of high- and low-latitude regions, as well as projected future ocean temperatures (i.e. 27, 28.5, 30, 31.5°C). Whilst thermally sensitive, no significant differences were observed between high- and low-latitude regions when measuring immunocompetence, haematocrit and anaerobic enzyme activity. The presence of co-gradient variation suggests that dispersal limitations in marine systems can promote local adaptive responses; however, intraspecific variation may not be ubiquitous amongst traits. Identifying locally adapted traits amongst populations remains necessary to accurately project species responses to climate change and identify differences in adaptive potential.

Keywords

References

  1. PLoS One. 2010 Oct 11;5(10):e13299 [PMID: 20949020]
  2. J Exp Biol. 2011 Nov 1;214(Pt 21):3639-48 [PMID: 21993793]
  3. Proc Biol Sci. 2011 Jun 22;278(1713):1823-30 [PMID: 21106582]
  4. J Exp Biol. 2003 Apr;206(Pt 7):1193-200 [PMID: 12604579]
  5. Physiology (Bethesda). 2023 May 1;38(3):141-158 [PMID: 36787401]
  6. Glob Chang Biol. 2016 Jan;22(1):137-50 [PMID: 26061811]
  7. J Exp Biol. 1998 Jan;201 (Pt 1):1-12 [PMID: 9390931]
  8. Proc Biol Sci. 2013 Dec 18;281(1776):20132744 [PMID: 24352948]
  9. Ann N Y Acad Sci. 2009 Jun;1168:100-29 [PMID: 19566705]
  10. Philos Trans R Soc Lond B Biol Sci. 2019 Mar 18;374(1768):20180186 [PMID: 30966966]
  11. Evolution. 2023 Mar 1;77(3):870-880 [PMID: 36637137]
  12. Evol Appl. 2023 Oct 09;16(11):1773-1788 [PMID: 38029067]
  13. Evol Appl. 2021 Feb 10;14(5):1286-1300 [PMID: 34025768]
  14. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 [PMID: 18458348]
  15. Heredity (Edinb). 2017 Oct;119(4):214-225 [PMID: 28745716]
  16. Sci Rep. 2019 Nov 28;9(1):17832 [PMID: 31780821]
  17. J Exp Biol. 2017 Aug 1;220(Pt 15):2685-2696 [PMID: 28768746]
  18. J Exp Biol. 2009 Dec;212(Pt 23):3771-80 [PMID: 19915118]
  19. J Anim Ecol. 2012 Sep;81(5):1126-31 [PMID: 22433064]
  20. Am Nat. 2012 Jun;179(6):E172-9 [PMID: 22617269]
  21. Nat Commun. 2016 May 17;7:11447 [PMID: 27186890]
  22. Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180550 [PMID: 31203756]
  23. Fish Physiol Biochem. 1992 Aug;10(2):123-32 [PMID: 24214209]
  24. Science. 2003 Jul 4;301(5629):65 [PMID: 12843385]
  25. Nat Ecol Evol. 2020 Aug;4(8):1044-1059 [PMID: 32451428]
  26. Ecol Lett. 2014 Nov;17(11):1351-64 [PMID: 25205436]
  27. Proc Biol Sci. 2017 Apr 26;284(1853): [PMID: 28446698]
  28. J Exp Biol. 2023 Oct 1;226(19): [PMID: 37721037]
  29. Nature. 2019 May;569(7754):108-111 [PMID: 31019302]
  30. Fly (Austin). 2017 Oct 2;11(4):277-283 [PMID: 28586288]
  31. J Exp Biol. 2018 Aug 10;221(Pt 15): [PMID: 29895683]
  32. Science. 2007 Jan 5;315(5808):95-7 [PMID: 17204649]
  33. Nat Ecol Evol. 2018 Jan;2(1):57-64 [PMID: 29203921]
  34. Respir Physiol. 1995 Dec;102(2-3):279-92 [PMID: 8904019]
  35. J Therm Biol. 2020 May;90:102582 [PMID: 32479385]
  36. J Exp Biol. 2004 Feb;207(Pt 5):881-90 [PMID: 14747418]
  37. J Exp Biol. 2021 Feb 24;224(Pt Suppl 1): [PMID: 33627469]
  38. J Therm Biol. 2019 Jul;83:178-186 [PMID: 31331517]
  39. Science. 2008 Jun 6;320(5881):1296-7 [PMID: 18535231]
  40. Evol Appl. 2019 Sep 30;13(1):116-131 [PMID: 31892947]
  41. Evolution. 2001 Nov 11;55(11):2263-73 [PMID: 11794786]
  42. Biol Bull. 2021 Aug;241(1):30-42 [PMID: 34436966]
  43. Science. 2011 Apr 1;332(6025):109-12 [PMID: 21454790]
  44. Z Tierpsychol. 1973 May;32(3):319-24 [PMID: 4781186]
  45. J Exp Biol. 2006 Jul;209(Pt 13):2462-71 [PMID: 16788029]
  46. J Evol Biol. 2006 Jan;19(1):239-52 [PMID: 16405595]
  47. Glob Chang Biol. 2014 Apr;20(4):1055-66 [PMID: 24281840]
  48. Am Nat. 2011 Oct;178 Suppl 1:S80-96 [PMID: 21956094]
  49. Evol Appl. 2016 Jan 19;9(2):409-19 [PMID: 26834833]
  50. Fish Shellfish Immunol. 2017 Jan;60:275-281 [PMID: 27913248]
  51. Evol Appl. 2015 Aug 24;9(1):271-90 [PMID: 27087852]
  52. Mol Ecol. 2008 Dec;17(23):5036-48 [PMID: 19120989]
  53. Coral Reefs. 2023;42(1):131-142 [PMID: 36415309]
  54. PLoS One. 2012;7(10):e47620 [PMID: 23110083]
  55. Proc Biol Sci. 2012 Jan 22;279(1727):349-56 [PMID: 21653591]
  56. Glob Chang Biol. 2019 Dec;25(12):4147-4164 [PMID: 31449341]
  57. J Exp Biol. 2017 Feb 1;220(Pt 3):386-396 [PMID: 27852753]
  58. Trends Ecol Evol. 1995 Jun;10(6):248-52 [PMID: 21237029]
  59. Am J Physiol Regul Integr Comp Physiol. 2002 Nov;283(5):R1254-62 [PMID: 12376420]
  60. J Exp Biol. 2020 Oct 27;223(Pt 20): [PMID: 33109621]
  61. Proc Biol Sci. 2015 Jun 7;282(1808):20150401 [PMID: 25994676]
  62. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33365-33372 [PMID: 33318195]
  63. J Fish Biol. 2021 Jun;98(6):1536-1555 [PMID: 33216368]
  64. Biol Rev Camb Philos Soc. 2004 May;79(2):409-27 [PMID: 15191230]
  65. Integr Comp Biol. 2002 Aug;42(4):790-6 [PMID: 21708777]
  66. Mol Ecol. 2018 Nov;27(22):4516-4528 [PMID: 30267545]
  67. Ecol Lett. 2020 Oct;23(10):1432-1441 [PMID: 32656957]
  68. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1665-79 [PMID: 22566674]
  69. Biol Lett. 2008 Feb 23;4(1):99-102 [PMID: 17986429]
  70. Biol Bull. 2021 Dec;241(3):347-358 [PMID: 35015619]
  71. Elife. 2021 Jan 26;10: [PMID: 33496262]
  72. J Fish Biol. 2016 Jan;88(1):122-51 [PMID: 26586591]
  73. J Exp Biol. 2010 Mar 15;213(6):912-20 [PMID: 20190116]
  74. Annu Rev Physiol. 2004;66:183-207 [PMID: 14977401]
  75. J Fish Biol. 2016 Jan;88(1):81-121 [PMID: 26768973]
  76. Proc Biol Sci. 2006 Jan 22;273(1583):217-23 [PMID: 16555790]
  77. Evol Appl. 2016 Jun 02;9(9):1072-1081 [PMID: 27695516]
  78. J Exp Biol. 2013 Aug 1;216(Pt 15):2771-82 [PMID: 23842625]
  79. Nat Ecol Evol. 2017 Dec;1(12):1846-1852 [PMID: 29062125]
  80. PLoS One. 2014 Apr 17;9(4):e95258 [PMID: 24743771]
  81. Ann Rev Mar Sci. 2011;3:509-35 [PMID: 21329215]

Word Cloud

Created with Highcharts 10.0.0variationtraitsspeciespopulationsthermalmarineintraspecificclimatechangeIntraspecificadaptationcansystemsdispersalpromotelocallyadaptedcoralreefobservedphysiologygradienttemperatureshigh-low-latituderegionsdifferencesadaptiveresponsesamongstrespondwilldependcollectiveresponseevolvedgeneticphenotypicplasticitycauseperformancecurvesvaryspecies'distributionswithinreceivedrelativelylittleattentionduebelieflackbarriersstrongenoughshowpresentlow-high-latitudedamselfishCo-gradientexaminingaerobicacrossreflectedmeansummerwellprojectedfutureoceanie2728530315°CWhilstthermallysensitivesignificantmeasuringimmunocompetencehaematocritanaerobicenzymeactivitypresenceco-gradientsuggestslimitationslocalhowevermayubiquitousIdentifyingremainsnecessaryaccuratelyprojectidentifypotentialRegionalfishDamselfishlatitudinaltemperature

Similar Articles

Cited By