fitness of gene-dependent sulfonamide-resistant in the mammalian gut.

Han Jiang, Yuzhi Dong, Xue Jiao, Biao Tang, Tao Feng, Ping Li, Jiehong Fang
Author Information
  1. Han Jiang: Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China. ORCID
  2. Yuzhi Dong: Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China.
  3. Xue Jiao: Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China.
  4. Biao Tang: School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China. ORCID
  5. Tao Feng: Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China.
  6. Ping Li: Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang, China. ORCID
  7. Jiehong Fang: Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China. ORCID

Abstract

The widespread sulfonamide resistance genes , , and in food and gut bacteria have attracted considerable attention. In this study, we assessed the fitness of gene-dependent sulfonamide-resistant , using a murine model. High fitness costs were incurred for and gene-dependent strains . A fitness advantage was found in three of the eight mice after intragastric administration of gene-dependent strains. We isolated three compensatory mutant strains (CMSs) independently from three mice that outcompeted the parent strain P2 . Whole-genome sequencing revealed seven identical single nucleotide polymorphism (SNP) mutations in the three CMSs compared with strain P2, an additional SNP mutation in strain S2-2, and two additional SNP mutations in strain S2-3. Furthermore, tandem mass tag-based quantitative proteomic analysis revealed abundant differentially expressed proteins (DEPs) in the CMSs compared with P2. Of these, seven key fitness-related DEPs distributed in two-component systems, galactose and tryptophan metabolism pathways, were verified using parallel reaction monitoring analysis. The DEPs in the CMSs influenced bacterial motility, environmental stress tolerance, colonization ability, carbohydrate utilization, cell morphology maintenance, and chemotaxis to restore fitness costs and adapt to the mammalian gut environment.IMPORTANCESulfonamides are traditional synthetic antimicrobial agents used in clinical and veterinary medical settings. Their long-term excessive overuse has resulted in widespread microbial resistance, limiting their application for medical interventions. Resistance to sulfonamides is primarily conferred by the alternative genes , , and encoding dihydropteroate synthase in bacteria. Studying the potential fitness cost of these genes is crucial for understanding the evolution and transmission of sulfonamide-resistant bacteria. studies have been conducted on the fitness cost of genes in bacteria. In this study, we provide critical insights into bacterial adaptation and transmission using an approach.

Keywords

References

  1. Front Microbiol. 2012 Feb 22;3:67 [PMID: 22363337]
  2. Infect Immun. 2007 Sep;75(9):4597-607 [PMID: 17591798]
  3. Mol Microbiol. 2013 Nov;90(4):813-23 [PMID: 24102855]
  4. J Bacteriol. 2014 May;196(9):1723-32 [PMID: 24563035]
  5. Trends Microbiol. 2005 May;13(5):236-42 [PMID: 15866041]
  6. J Biol Chem. 1997 Jan 17;272(3):1440-3 [PMID: 8999810]
  7. Mol Gen Genet. 1990 Apr;221(2):139-47 [PMID: 2196428]
  8. Microb Biotechnol. 2009 Jan;2(1):75-90 [PMID: 21261883]
  9. mBio. 2018 Apr 3;9(2): [PMID: 29615507]
  10. mBio. 2022 Apr 26;13(2):e0359521 [PMID: 35311534]
  11. Microbiology (Reading). 2013 Feb;159(Pt 2):402-410 [PMID: 23397453]
  12. Trends Microbiol. 2020 Jul;28(7):566-577 [PMID: 32544443]
  13. Sci Transl Med. 2013 May 8;5(184):184ra60 [PMID: 23658245]
  14. Front Microbiol. 2017 Oct 17;8:2014 [PMID: 29089936]
  15. Trends Microbiol. 2022 Jun;30(6):534-543 [PMID: 34848115]
  16. J Bacteriol. 2007 Dec;189(23):8447-57 [PMID: 17905992]
  17. Gut Pathog. 2012 May 25;4(1):5 [PMID: 22632036]
  18. Int J Food Microbiol. 2006 Feb 1;106(2):235-7 [PMID: 16216373]
  19. BMC Chem. 2022 Nov 3;16(1):85 [PMID: 36329493]
  20. Trends Microbiol. 2023 Jul;31(7):749-762 [PMID: 36849330]
  21. Anal Chem. 2010 Dec 15;82(24):10116-24 [PMID: 21090646]
  22. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6114-6120 [PMID: 32123098]
  23. FEMS Microbiol Rev. 2010 Jul;34(4):426-44 [PMID: 20070374]
  24. ISME J. 2017 Jul;11(7):1535-1544 [PMID: 28387772]
  25. mSystems. 2020 Jan 28;5(1): [PMID: 31992633]
  26. Front Microbiol. 2017 Sep 26;8:1852 [PMID: 29018426]
  27. J Hazard Mater. 2014 Jul 30;277:34-43 [PMID: 24637153]
  28. Ecotoxicol Environ Saf. 2020 Jun 15;196:110543 [PMID: 32278139]
  29. Sci Total Environ. 2022 Apr 1;815:152756 [PMID: 34990667]
  30. mSystems. 2020 Jul 28;5(4): [PMID: 32723793]
  31. J Antimicrob Chemother. 2016 May;71(5):1307-13 [PMID: 26851608]
  32. mBio. 2014 Aug 26;5(5):e01611-14 [PMID: 25161191]
  33. Nat Ecol Evol. 2022 Dec;6(12):1980-1991 [PMID: 36303001]
  34. Acta Vet Scand. 2010 Jul 30;52:47 [PMID: 20670455]
  35. PLoS Genet. 2014 Oct 02;10(10):e1004649 [PMID: 25275371]
  36. Gene. 2021 Feb 5;768:145289 [PMID: 33181257]
  37. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12179-84 [PMID: 21715660]
  38. Nat Commun. 2021 May 27;12(1):3186 [PMID: 34045458]
  39. J Biol Chem. 1991 Mar 25;266(9):5980-90 [PMID: 2005134]
  40. Front Microbiol. 2021 Feb 15;12:627104 [PMID: 33658986]
  41. Science. 2006 Jun 30;312(5782):1944-6 [PMID: 16809538]
  42. Nat Ecol Evol. 2020 Sep;4(9):1268-1278 [PMID: 32632259]
  43. FEMS Microbiol Lett. 2019 Sep 1;366(17): [PMID: 31598670]
  44. Environ Microbiol. 2021 Dec;23(12):7538-7549 [PMID: 34554624]
  45. Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2201204119 [PMID: 35994658]
  46. Nat Methods. 2009 May;6(5):359-62 [PMID: 19377485]
  47. Front Microbiol. 2019 Aug 02;10:1787 [PMID: 31428076]
  48. Trends Biochem Sci. 2001 Jun;26(6):369-76 [PMID: 11406410]
  49. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  50. Trends Microbiol. 2018 Dec;26(12):978-985 [PMID: 30049587]
  51. BBA Clin. 2016 Feb 27;5:85-100 [PMID: 27051594]
  52. Food Microbiol. 2023 Aug;113:104279 [PMID: 37098435]
  53. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6845-E6854 [PMID: 29915072]

Grants

  1. 31901792/MOST | National Natural Science Foundation of China (NSFC)
  2. 31801655/MOST | National Natural Science Foundation of China (NSFC)
  3. LGN22C200013/MOST | NSFC | NSFC-Zhejiang Joint Fund | | Zhejiang Province Public Welfare Technology Application Research Project (Public Welfare Technology Application Research Project of Zhejiang Province)
  4. 2023YW13/Fundamental Research Funds for the Provincial Universities of Zhejiang Province

MeSH Term

Animals
Escherichia coli
Mice
Sulfonamides
Drug Resistance, Bacterial
Escherichia coli Proteins
Polymorphism, Single Nucleotide
Genetic Fitness
Anti-Bacterial Agents
Gastrointestinal Microbiome
Mutation
Dihydropteroate Synthase
Whole Genome Sequencing
Female
Bacterial Proteins
Carrier Proteins

Chemicals

Sulfonamides
Escherichia coli Proteins
Anti-Bacterial Agents
Sul1 protein, E coli
Sul2 protein, bacteria
Dihydropteroate Synthase
Bacterial Proteins
Carrier Proteins