The independent and combined effects of aerobic exercise intensity and dose differentially increase post-exercise cerebral shear stress and blood flow.

M Erin Moir, Adam T Corkery, Kathleen B Miller, Andrew G Pearson, Nicole A Loggie, Avery A Apfelbeck, Anna J Howery, Jill N Barnes
Author Information
  1. M Erin Moir: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA. ORCID
  2. Adam T Corkery: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  3. Kathleen B Miller: Department of Health and Exercise Science, University of St Thomas, St Paul, Minnesota, USA. ORCID
  4. Andrew G Pearson: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA. ORCID
  5. Nicole A Loggie: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  6. Avery A Apfelbeck: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  7. Anna J Howery: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  8. Jill N Barnes: Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA. ORCID

Abstract

This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake ( ) treadmill test followed by three randomized study visits: treadmill exercise at 30% of for 30 min, 70% of for 30 min and 70% of for a duration that resulted in caloric expenditure equal to that in the 30% visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: P = 0.005, condition: P = 0.012) and the increase was greater following exercise at 70% (∆4.1 ± 3.5 dyn/cm) compared with 30% (∆1.1 ± 1.9 dyn/cm; P = 0.041). ICA blood flow remained elevated following exercise (time: P = 0.002, condition: P = 0.010) with greater increases after 70% (Δ268 ± 150 mL/min) compared with 30% (∆125 ± 149 mL/min; P = 0.041) or 70% EqEE (∆127 ± 177 mL/min; P = 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.

Keywords

References

  1. J Appl Physiol (1985). 2022 Aug 1;133(2):461-470 [PMID: 35796612]
  2. Clin Physiol Funct Imaging. 2012 May;32(3):234-40 [PMID: 22487159]
  3. Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1526-31 [PMID: 15591094]
  4. J Appl Physiol (1985). 2018 Dec 1;125(6):1917-1930 [PMID: 29878868]
  5. J Appl Physiol (1985). 2007 Feb;102(2):713-21 [PMID: 17068217]
  6. J Appl Physiol (1985). 1996 Jul;81(1):413-8 [PMID: 8828693]
  7. J Appl Physiol (1985). 2022 Aug 1;133(2):390-402 [PMID: 35708700]
  8. Exp Physiol. 2024 Oct;109(10):1796-1805 [PMID: 39141846]
  9. Eur J Appl Physiol. 2012 Jan;112(1):33-42 [PMID: 21472439]
  10. Eur J Appl Physiol. 2021 Sep;121(9):2471-2485 [PMID: 34028613]
  11. J Appl Physiol (1985). 2017 May 1;122(5):1238-1248 [PMID: 28209742]
  12. Brain Plast. 2018 Dec 12;4(1):65-79 [PMID: 30564547]
  13. Eur J Appl Physiol. 2013 Jun;113(6):1597-604 [PMID: 23314684]
  14. J Appl Physiol (1985). 2010 Sep;109(3):864-9 [PMID: 20595539]
  15. Physiol Rep. 2021 Jan;9(2):e14705 [PMID: 33463912]
  16. Eur J Prev Cardiol. 2016 Sep;23(14):1565-72 [PMID: 27121699]
  17. J Appl Physiol (1985). 2024 Mar 1;136(3):535-548 [PMID: 38153849]
  18. J Appl Physiol (1985). 2016 Apr 1;120(7):766-73 [PMID: 26846548]
  19. Front Physiol. 2022 May 10;13:857816 [PMID: 35620608]
  20. J Physiol. 2011 Jun 1;589(Pt 11):2847-56 [PMID: 21486813]
  21. Eur J Appl Physiol. 2023 Apr;123(4):781-796 [PMID: 36454281]
  22. J Cereb Blood Flow Metab. 2019 May;39(5):849-858 [PMID: 29125372]
  23. J Am Coll Cardiol. 1996 Dec;28(7):1652-60 [PMID: 8962548]
  24. J Physiol. 2022 Mar;600(6):1385-1403 [PMID: 34904229]
  25. Clin Hemorheol Microcirc. 2012;51(2):101-9 [PMID: 22240371]
  26. Med Sci Sports Exerc. 2009 May;41(5):1072-9 [PMID: 19346980]
  27. Adv Physiol Educ. 2015 Jun;39(2):55-62 [PMID: 26031719]
  28. J Appl Physiol (1985). 2007 Apr;102(4):1510-9 [PMID: 17170205]
  29. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  30. J Physiol. 2020 Apr;598(8):1459-1473 [PMID: 31912506]
  31. Am J Physiol Heart Circ Physiol. 2017 Jul 1;313(1):H24-H31 [PMID: 28389602]
  32. Front Physiol. 2018 Nov 21;9:1657 [PMID: 30519192]

Grants

  1. /Wisconsin Alumni Research Foundation

MeSH Term

Humans
Female
Male
Adult
Exercise
Cerebrovascular Circulation
Oxygen Consumption
Young Adult
Exercise Test
Blood Flow Velocity
Stress, Mechanical

Word Cloud

Created with Highcharts 10.0.0exercisebloodflowP = 0ICAshearstress70%aerobicintensity30%dosepost-exercisefollowingincreasecomparedacutecerebraltreadmill30 minresultedEqEEinternalcarotidarterycalculatedtime:condition:greater041effectsresearchexaminedimpactFourteenyoungadults27 ± 5 yearsageeightfemalescompletedmaximaloxygenuptaketestfollowedthreerandomizedstudyvisits:durationcaloricexpenditureequalvisitvenousdrawultrasoundcollectedimmediatelydiametervelocitydeterminedusingautomatededgedetectionsoftwareUsingmeasuresviscosityAerobicincreased005012∆41 ± 35 dyn/cm∆11 ± 19 dyn/cmremainedelevated002010increasesΔ268 ± 150 mL/min∆125 ± 149 mL/min∆127 ± 177 mL/min004Thereforeintensity-dose-dependentwherebyvigorousprovokedlargerlightperformedhigherindependentcombineddifferentially

Similar Articles

Cited By