Unlocking the potential of stimuli-responsive biomaterials for bone regeneration.

Ke Yang, Zhuoshu Wu, Keke Zhang, Michael D Weir, Hockin H K Xu, Lei Cheng, Xiaojing Huang, Wen Zhou
Author Information
  1. Ke Yang: Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
  2. Zhuoshu Wu: Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
  3. Keke Zhang: School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
  4. Michael D Weir: Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States.
  5. Hockin H K Xu: Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States.
  6. Lei Cheng: State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
  7. Xiaojing Huang: Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
  8. Wen Zhou: Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.

Abstract

Bone defects caused by tumors, osteoarthritis, and osteoporosis attract great attention. Because of outstanding biocompatibility, osteogenesis promotion, and less secondary infection incidence ratio, stimuli-responsive biomaterials are increasingly used to manage this issue. These biomaterials respond to certain stimuli, changing their mechanical properties, shape, or drug release rate accordingly. Thereafter, the activated materials exert instructive or triggering effects on cells and tissues, match the properties of the original bone tissues, establish tight connection with ambient hard tissue, and provide suitable mechanical strength. In this review, basic definitions of different categories of stimuli-responsive biomaterials are presented. Moreover, possible mechanisms, advanced studies, and pros and cons of each classification are discussed and analyzed. This review aims to provide an outlook on the future developments in stimuli-responsive biomaterials.

Keywords

References

  1. Int J Mol Sci. 2022 Sep 11;23(18): [PMID: 36142445]
  2. Theranostics. 2020 Sep 26;10(25):11837-11861 [PMID: 33052249]
  3. Int J Mol Sci. 2018 Nov 15;19(11): [PMID: 30445673]
  4. Pharm Res. 2012 Apr;29(4):902-21 [PMID: 22274559]
  5. ACS Appl Bio Mater. 2022 Jul 18;5(7):3212-3218 [PMID: 35700312]
  6. Pharmaceutics. 2023 Jan 11;15(1): [PMID: 36678886]
  7. Nanoscale. 2019 Nov 28;11(44):21030-21045 [PMID: 31674617]
  8. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110466 [PMID: 31923948]
  9. J Bone Joint Surg Am. 2007 Mar;89(3):649-58 [PMID: 17332116]
  10. Bioconjug Chem. 2017 Jan 18;28(1):75-80 [PMID: 28095687]
  11. J Funct Biomater. 2022 Dec 22;14(1): [PMID: 36662055]
  12. Carbohydr Polym. 2018 Jul 15;192:308-316 [PMID: 29691026]
  13. Biomaterials. 2019 Oct;218:119334 [PMID: 31306826]
  14. Acta Biomater. 2009 Jul;5(6):2189-95 [PMID: 19282264]
  15. Int J Biol Macromol. 2023 Dec 31;253(Pt 6):127278 [PMID: 37806412]
  16. Calcif Tissue Int. 2001 Dec;69(6):373-8 [PMID: 11800235]
  17. Tissue Eng Part A. 2018 Feb;24(3-4):254-263 [PMID: 28610471]
  18. Med Hypotheses. 2017 Oct;108:10-16 [PMID: 29055380]
  19. Biomaterials. 2013 Dec;34(38):10028-42 [PMID: 24095251]
  20. Biomaterials. 2020 Nov;258:120280 [PMID: 32810650]
  21. ACS Nano. 2019 Nov 26;13(11):13581-13594 [PMID: 31697055]
  22. J Control Release. 2022 Aug;348:206-238 [PMID: 35660634]
  23. Front Bioeng Biotechnol. 2023 Aug 17;11:1240861 [PMID: 37662432]
  24. Injury. 2019 Nov;50(11):1853-1867 [PMID: 31585673]
  25. Sci Technol Adv Mater. 2023 Aug 24;24(1):2242242 [PMID: 37638280]
  26. Biomater Sci. 2020 Mar 31;8(7):1840-1854 [PMID: 31967110]
  27. Int J Mol Sci. 2022 Dec 19;23(24): [PMID: 36555827]
  28. Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110862 [PMID: 32279825]
  29. Bioact Mater. 2017 Jun 07;2(4):224-247 [PMID: 29744432]
  30. Curr Pharm Biotechnol. 2024;25(8):981-999 [PMID: 37594093]
  31. Pharmaceutics. 2023 Mar 18;15(3): [PMID: 36986842]
  32. Photobiomodul Photomed Laser Surg. 2019 Oct;37(10):581-595 [PMID: 31553265]
  33. Bioact Mater. 2021 Feb 15;6(9):2754-2766 [PMID: 33665507]
  34. Chem Biol. 2014 Sep 18;21(9):1075-101 [PMID: 25237856]
  35. ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44111-44124 [PMID: 36137506]
  36. Diabetes Res Clin Pract. 2019 Nov;157:107843 [PMID: 31518657]
  37. J Mater Chem B. 2017 Jun 21;5(23):4307-4321 [PMID: 32263961]
  38. Expert Opin Drug Deliv. 2021 Oct;18(10):1355-1378 [PMID: 33985402]
  39. Protein Sci. 2020 Aug;29(8):1724-1747 [PMID: 32557882]
  40. Adv Mater. 2019 Jan;31(1):e1802084 [PMID: 30294947]
  41. Biomaterials. 2009 Mar;30(9):1772-80 [PMID: 19135244]
  42. Int J Oral Sci. 2022 Sep 5;14(1):45 [PMID: 36064833]
  43. Bone Res. 2022 Feb 23;10(1):17 [PMID: 35197462]
  44. Nat Rev Endocrinol. 2021 Nov;17(11):685-697 [PMID: 34518671]
  45. J Tissue Eng Regen Med. 2018 Jan;12(1):e250-e260 [PMID: 28084018]
  46. Biotechnol Bioeng. 2013 May;110(5):1466-75 [PMID: 23192383]
  47. Acta Physiol (Oxf). 2023 May;238(1):e13960 [PMID: 36906912]
  48. Int J Biol Macromol. 2021 Aug 31;185:229-239 [PMID: 34119552]
  49. J Control Release. 2024 Jan;365:848-875 [PMID: 37734674]
  50. Front Chem. 2022 Aug 17;10:977419 [PMID: 36059871]
  51. Nanoscale. 2014 Nov 7;6(21):12273-86 [PMID: 25251024]
  52. Healthcare (Basel). 2014 Oct 27;2(4):445-67 [PMID: 27429287]
  53. Int J Biol Macromol. 2021 Dec 15;193(Pt A):553-561 [PMID: 34673105]
  54. J Dent Res. 2010 Dec;89(12):1333-48 [PMID: 20924069]
  55. J Mater Chem B. 2019 Aug 21;7(33):5019-5037 [PMID: 31432870]
  56. J Cell Biol. 1991 May;113(3):681-7 [PMID: 1849907]
  57. Physiol Rev. 2014 Jul;94(3):909-50 [PMID: 24987008]
  58. MRS Bull. 2019 Jun;44(6):494-504 [PMID: 31371848]
  59. Adv Mater. 2023 Feb;35(5):e2206545 [PMID: 36426823]
  60. J Mater Chem B. 2020 Oct 7;8(38):8908-8913 [PMID: 33026400]
  61. Acta Biomater. 2019 Jul 1;92:19-36 [PMID: 31071476]
  62. Philos Trans R Soc Lond B Biol Sci. 2014 Feb 03;369(1638):20130099 [PMID: 24493747]
  63. Adv Sci (Weinh). 2019 May 17;6(14):1900112 [PMID: 31380203]
  64. J Mater Chem B. 2019 Mar 21;7(11):1847-1854 [PMID: 32255047]
  65. Acta Biomater. 2018 Jun;73:1-20 [PMID: 29673838]
  66. Adv Mater. 2017 Jun;29(24): [PMID: 28437016]
  67. Carbohydr Polym. 2023 Mar 15;304:120493 [PMID: 36641175]
  68. Colloids Surf B Biointerfaces. 2021 Feb;198:111473 [PMID: 33250417]
  69. Mater Sci Eng C Mater Biol Appl. 2021 Jun;125:112108 [PMID: 33965114]
  70. Molecules. 2018 Dec 19;23(12): [PMID: 30572689]
  71. Eur J Pharm Biopharm. 2015 Nov;97(Pt B):438-53 [PMID: 26614562]
  72. Hum Exp Toxicol. 2021 Jul;40(7):1173-1182 [PMID: 33522294]
  73. Med Eng Phys. 1998 Sep;20(6):397-402 [PMID: 9796945]
  74. Carbohydr Polym. 2023 Aug 15;314:120899 [PMID: 37173039]
  75. Int J Mol Sci. 2020 Feb 27;21(5): [PMID: 32120998]
  76. Adv Funct Mater. 2021 Mar 3;31(10):2008054 [PMID: 33613147]
  77. Adv Healthc Mater. 2019 Feb;8(4):e1801106 [PMID: 30328293]
  78. Nanoscale Adv. 2023 Dec 18;6(2):499-510 [PMID: 38235100]
  79. Curr Stem Cell Res Ther. 2020;15(5):428-440 [PMID: 31893995]
  80. Polymers (Basel). 2020 Dec 30;13(1): [PMID: 33396820]
  81. Tissue Eng Part B Rev. 2023 Jun;29(3):217-231 [PMID: 36170583]
  82. Inflamm Regen. 2018 Feb 27;38:2 [PMID: 29497465]
  83. Nat Commun. 2016 Jan 14;7:10376 [PMID: 26765931]
  84. Bioact Mater. 2020 Feb 12;5(1):164-183 [PMID: 32083230]
  85. Bone Res. 2021 Feb 11;9(1):12 [PMID: 33574225]
  86. Polymers (Basel). 2021 Jun 24;13(13): [PMID: 34202869]
  87. Bone. 2021 Feb;143:115761 [PMID: 33217628]
  88. J Mater Chem B. 2013 Oct 7;1(37):4736-4745 [PMID: 32261157]
  89. J Mater Chem B. 2017 Sep 21;5(35):7352-7359 [PMID: 32264185]
  90. Adv Mater. 2018 Mar;30(10): [PMID: 29333689]
  91. ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8749-8762 [PMID: 30734555]
  92. J Orthop Translat. 2022 Feb 16;33:41-54 [PMID: 35228996]
  93. Int J Biol Macromol. 2021 Jul 1;182:1746-1758 [PMID: 34052276]
  94. Adv Healthc Mater. 2013;2(6):908-15 [PMID: 25136729]
  95. Regen Biomater. 2022 Aug 23;9:rbac056 [PMID: 36072265]
  96. Adv Sci (Weinh). 2023 Dec;10(36):e2302874 [PMID: 37973554]
  97. Small. 2023 Mar;19(9):e2203464 [PMID: 36526612]
  98. J Bone Miner Res. 2019 Feb;34(2):327-332 [PMID: 30352125]
  99. ACS Nano. 2021 Apr 27;15(4):7078-7093 [PMID: 33764740]
  100. Bioact Mater. 2023 Aug 14;31:231-246 [PMID: 37637084]
  101. Tissue Eng Part B Rev. 2020 Dec;26(6):571-585 [PMID: 32380937]
  102. Pharmaceutics. 2020 Oct 21;12(10): [PMID: 33096915]
  103. Bioact Mater. 2021 Dec 31;16:218-231 [PMID: 35415289]
  104. Nature. 2018 Sep;561(7722):195-200 [PMID: 30185903]
  105. Acta Biomater. 2014 Jun;10(6):2341-53 [PMID: 24556448]
  106. Medicina (Kaunas). 2021 Nov 05;57(11): [PMID: 34833427]
  107. Biomed Mater. 2010 Feb;5(1):15001 [PMID: 20057017]
  108. Gels. 2023 Aug 29;9(9): [PMID: 37754379]
  109. Bioact Mater. 2020 Jul 15;5(4):1087-1101 [PMID: 32695938]
  110. Biomaterials. 2019 Dec;225:119520 [PMID: 31586865]
  111. Adv Healthc Mater. 2023 Oct;12(27):e2300713 [PMID: 37498795]
  112. Small. 2019 Nov;15(45):e1903060 [PMID: 31599125]
  113. Metabolism. 2022 Nov;136:155294 [PMID: 35995280]
  114. J Orthop Translat. 2018 Mar 15;14:16-22 [PMID: 30035029]
  115. J Mater Chem B. 2020 Oct 28;8(41):9404-9427 [PMID: 32970087]
  116. ACS Appl Bio Mater. 2022 Nov 21;5(11):5445-5456 [PMID: 36215135]
  117. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):97-111 [PMID: 33354968]
  118. Biomaterials. 2016 May;87:104-117 [PMID: 26914701]
  119. ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40728-40739 [PMID: 32794726]
  120. J Mater Chem B. 2020 Oct 14;8(38):8878-8883 [PMID: 33026388]
  121. ACS Appl Mater Interfaces. 2023 Mar 8;15(9):12273-12293 [PMID: 36890691]
  122. Chem Rev. 2016 Mar 9;116(5):3029-85 [PMID: 26875845]
  123. J Control Release. 2015 Dec 10;219:8-17 [PMID: 26374941]
  124. Bioact Mater. 2020 Sep 21;6(3):666-683 [PMID: 33005830]
  125. Adv Mater. 2018 Sep;30(37):e1707365 [PMID: 29876985]
  126. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:1267-1280 [PMID: 27987683]
  127. Tissue Eng Part B Rev. 2023 Dec;29(6):591-604 [PMID: 37166415]
  128. Antioxidants (Basel). 2022 Feb 06;11(2): [PMID: 35204201]
  129. Int J Biochem Cell Biol. 2015 Jul;64:212-9 [PMID: 25952151]
  130. Biomaterials. 2019 Mar;196:80-89 [PMID: 29329642]
  131. Bioact Mater. 2020 Jan 15;5(1):82-91 [PMID: 31956737]
  132. Biomaterials. 2023 Dec;303:122355 [PMID: 37948855]
  133. ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16865-72 [PMID: 26177281]
  134. Biomaterials. 2014 Dec;35(36):9608-19 [PMID: 25176065]
  135. Biomaterials. 2017 Oct;142:31-40 [PMID: 28719819]
  136. Tissue Eng Part B Rev. 2012 Feb;18(1):24-39 [PMID: 21806489]
  137. J Nanobiotechnology. 2024 Feb 7;22(1):54 [PMID: 38326903]
  138. Bioact Mater. 2024 Feb 02;35:181-207 [PMID: 38327824]
  139. Front Bioeng Biotechnol. 2022 Jan 11;9:820468 [PMID: 35087811]
  140. Carbohydr Polym. 2018 Oct 1;197:469-477 [PMID: 30007636]
  141. Nanomedicine. 2018 Apr;14(3):811-822 [PMID: 29339189]
  142. Adv Mater. 2024 Apr;36(16):e2313317 [PMID: 38206943]
  143. Curr Pharm Des. 2022;28(11):910-921 [PMID: 34879797]
  144. Pharm Res. 2008 Oct;25(10):2216-30 [PMID: 18509602]
  145. Int J Mol Sci. 2023 Feb 27;24(5): [PMID: 36902046]
  146. Eur J Trauma Emerg Surg. 2020 Apr;46(2):231-244 [PMID: 32078704]
  147. RSC Adv. 2022 Mar 22;12(15):8878-8888 [PMID: 35424887]
  148. Macromol Biosci. 2016 May;16(5):635-46 [PMID: 26891447]
  149. J Nanobiotechnology. 2023 Aug 10;21(1):264 [PMID: 37563652]

Word Cloud

Created with Highcharts 10.0.0biomaterialsstimuli-responsivebonemechanicalpropertiestissuesprovidereviewregenerationBonedefectscausedtumorsosteoarthritisosteoporosisattractgreatattentionoutstandingbiocompatibilityosteogenesispromotionlesssecondaryinfectionincidenceratioincreasinglyusedmanageissuerespondcertainstimulichangingshapedrugreleaserateaccordinglyThereafteractivatedmaterialsexertinstructivetriggeringeffectscellsmatchoriginalestablishtightconnectionambienthardtissuesuitablestrengthbasicdefinitionsdifferentcategoriespresentedMoreoverpossiblemechanismsadvancedstudiesprosconsclassificationdiscussedanalyzedaimsoutlookfuturedevelopmentsUnlockingpotentialcompositeshydrogelsimplantsscaffolds

Similar Articles

Cited By