A review of food contamination with nitrated and oxygenated polycyclic aromatic hydrocarbons: toxicity, analysis, occurrence, and risk assessment.

Jihun Jeong, Geehyeon Kim, Joon-Goo Lee
Author Information
  1. Jihun Jeong: Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea.
  2. Geehyeon Kim: Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea.
  3. Joon-Goo Lee: Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea.

Abstract

Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) and their derivatives, particularly nitrated polycyclic aromatic hydrocarbons (NPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs), can result in adverse health effects and may carry higher toxicity risks compared to PAHs alone. Various extraction methods have been utilized for PAHs derivatives from food samples. The analytes are then analyzed using gas chromatography/mass spectrometry and high-performance liquid chromatography techniques. PAHs derivatives are increasingly being detected in the environment, prompting scrutiny from numerous researchers. Similarly, their presence in food is becoming a significant concern. The elevated levels of PAH derivatives found in smoked food may result in detrimental dietary exposure and pose potential health hazards. Furthermore, investigating the level of exposure to these contaminants in food is imperative, as their consumption by humans carries inherent risks. Consequently, this review concentrates on the toxicity, analysis, occurrence, and risk evaluation of NPAHs and OPAHs present in food sources.

Keywords

References

  1. Fundam Appl Toxicol. 1996 Oct;33(2):212-9 [PMID: 8921339]
  2. J Agric Food Chem. 2017 Mar 8;65(9):1992-1999 [PMID: 28215082]
  3. Int J Anal Chem. 2010;2010:398381 [PMID: 20396670]
  4. Sci Rep. 2015 Aug 12;5:12992 [PMID: 26265155]
  5. J Hazard Mater. 2021 Jul 5;413:125360 [PMID: 33611038]
  6. J Food Sci Technol. 2018 Oct;55(10):3991-4000 [PMID: 30228397]
  7. Anal Bioanal Chem. 2006 Oct;386(4):859-81 [PMID: 17019586]
  8. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020 Jun;37(6):1004-1026 [PMID: 32186468]
  9. Sci Total Environ. 2017 Mar 1;581-582:237-257 [PMID: 28069306]
  10. Molecules. 2020 May 07;25(9): [PMID: 32392764]
  11. Mutagenesis. 2016 Mar;31(2):205-13 [PMID: 26656082]
  12. Toxicol Appl Pharmacol. 2013 Sep 1;271(2):266-75 [PMID: 23684558]
  13. Environ Sci Pollut Res Int. 2014 Dec;21(24):13867-76 [PMID: 24510601]
  14. Toxicol Sci. 2006 Jun;91(2):440-7 [PMID: 16531469]
  15. Environ Sci Pollut Res Int. 2023 Jun;30(26):68536-68547 [PMID: 37126174]
  16. Environ Sci Pollut Res Int. 2019 Mar;26(9):9065-9078 [PMID: 30715706]
  17. Toxicol Sci. 2017 May 1;157(1):246-259 [PMID: 28186253]
  18. Sci Total Environ. 2024 Feb 20;912:169394 [PMID: 38135091]
  19. Environ Toxicol Chem. 2014 Aug;33(8):1792-801 [PMID: 24764175]
  20. Food Chem X. 2022 May 27;14:100351 [PMID: 36118985]
  21. Environ Sci Technol. 2015 Mar 17;49(6):3869-77 [PMID: 25715055]
  22. Environ Int. 2019 Feb;123:543-557 [PMID: 30622079]
  23. Foods. 2022 Aug 13;11(16): [PMID: 36010446]
  24. Environ Int. 2017 Nov;108:261-270 [PMID: 28898809]
  25. Environ Int. 2015 Nov;84:26-38 [PMID: 26203892]
  26. Environ Int. 2022 May;163:107232 [PMID: 35427839]
  27. Crit Rev Food Sci Nutr. 2024;64(15):4882-4903 [PMID: 36384378]
  28. Anal Chim Acta. 2012 Aug 31;740:93-103 [PMID: 22840656]
  29. J Chromatogr A. 2013 Sep 13;1307:172-9 [PMID: 23932031]
  30. Food Chem. 2022 Mar 30;373(Pt B):131436 [PMID: 34740052]
  31. Environ Toxicol Pharmacol. 2010 Nov;30(3):224-44 [PMID: 21787655]
  32. Talanta. 2023 Jan 1;251:123761 [PMID: 35964516]
  33. Talanta. 2019 Dec 1;205:120128 [PMID: 31450405]
  34. Environ Pollut. 2019 Mar;246:678-687 [PMID: 30616058]
  35. Biomed Chromatogr. 2017 Jan;31(1): [PMID: 27723111]
  36. J Hazard Mater. 2022 Aug 15;436:129143 [PMID: 35594669]
  37. J Environ Sci (China). 2021 Apr;102:159-169 [PMID: 33637241]
  38. Food Addit Contam. 1984 Jan-Mar;1(1):29-37 [PMID: 6085686]
  39. Mutat Res. 1996 Dec 20;371(3-4):123-57 [PMID: 9008716]
  40. Environ Pollut. 2019 Dec;255(Pt 2):112967 [PMID: 31610516]
  41. Crit Rev Food Sci Nutr. 2017 Oct 13;57(15):3297-3312 [PMID: 26714230]
  42. Crit Rev Toxicol. 1986;17(1):23-60 [PMID: 2427276]
  43. Food Chem. 2021 Dec 15;365:130625 [PMID: 34329879]
  44. Anal Bioanal Chem. 2014 May;406(13):3131-48 [PMID: 24705956]
  45. Environ Geochem Health. 2022 Aug;44(8):2743-2765 [PMID: 34415461]
  46. Molecules. 2023 Jan 12;28(2): [PMID: 36677835]
  47. Chemosphere. 2018 May;198:303-310 [PMID: 29421744]
  48. Food Addit Contam. 1996 Nov-Dec;13(8):969-77 [PMID: 8950116]
  49. J Environ Sci (China). 2023 Feb;124:782-793 [PMID: 36182183]

Word Cloud

Created with Highcharts 10.0.0foodPAHspolycyclicaromaticderivativesexposurehydrocarbonstoxicitynitratedNPAHsoxygenatedOPAHsresulthealthmayrisksreviewanalysisoccurrenceriskassessmentProlongedparticularlycanadverseeffectscarryhighercomparedaloneVariousextractionmethodsutilizedsamplesanalytesanalyzedusinggaschromatography/massspectrometryhigh-performanceliquidchromatographytechniquesincreasinglydetectedenvironmentpromptingscrutinynumerousresearchersSimilarlypresencebecomingsignificantconcernelevatedlevelsPAHfoundsmokeddetrimentaldietaryposepotentialhazardsFurthermoreinvestigatinglevelcontaminantsimperativeconsumptionhumanscarriesinherentConsequentlyconcentratesevaluationpresentsourcescontaminationhydrocarbons:AnalyticalmethodFoodOccurrencederivativeRisk

Similar Articles

Cited By