Real-time infectious disease endurance indicator system for scientific decisions using machine learning and rapid data processing.

Shivendra Dubey, Dinesh Kumar Verma, Mahesh Kumar
Author Information
  1. Shivendra Dubey: Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India.
  2. Dinesh Kumar Verma: Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India.
  3. Mahesh Kumar: Computer Science and Engineering, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India.

Abstract

The SARS-CoV-2 virus, which induces an acute respiratory illness commonly referred to as COVID-19, had been designated as a pandemic by the World Health Organization due to its highly infectious nature and the associated public health risks it poses globally. Identifying the critical factors for predicting mortality is essential for improving patient therapy. Unlike other data types, such as computed tomography scans, x-radiation, and ultrasounds, basic blood test results are widely accessible and can aid in predicting mortality. The present research advocates the utilization of machine learning (ML) methodologies for predicting the likelihood of infectious disease like COVID-19 mortality by leveraging blood test data. Age, LDH (lactate dehydrogenase), lymphocytes, neutrophils, and hs-CRP (high-sensitivity C-reactive protein) are five extremely potent characteristics that, when combined, can accurately predict mortality in 96% of cases. By combining XGBoost feature importance with neural network classification, the optimal approach can predict mortality with exceptional accuracy from infectious disease, along with achieving a precision rate of 90% up to 16 days before the event. The studies suggested model's excellent predictive performance and practicality were confirmed through testing with three instances that depended on the days to the outcome. By carefully analyzing and identifying patterns in these significant biomarkers insightful information has been obtained for simple application. This study offers potential remedies that could accelerate decision-making for targeted medical treatments within healthcare systems, utilizing a timely, accurate, and reliable method.

Keywords

References

  1. Lancet Public Health. 2020 May;5(5):e261-e270 [PMID: 32220655]
  2. Interdiscip Sci. 2022 Jun;14(2):504-519 [PMID: 34357528]
  3. J Microbiol. 2022 Mar;60(3):321-334 [PMID: 35157221]
  4. Array (N Y). 2023 Mar;17:100271 [PMID: 36530931]
  5. Meta Gene. 2021 Feb;27:100844 [PMID: 33349792]
  6. Stem Cell Rev Rep. 2021 Feb;17(1):1-3 [PMID: 33423157]
  7. Environ Dev Sustain. 2022 Aug 16;:1-16 [PMID: 35993085]
  8. Diagn Interv Imaging. 2020 Jul - Aug;101(7-8):431-437 [PMID: 32571748]
  9. J Infect Public Health. 2022 Feb;15(2):289-296 [PMID: 35078755]
  10. Physica A. 2023 Jan 1;609:128337 [PMID: 36440383]
  11. J Microbiol. 2022 Mar;60(3):235-237 [PMID: 35235176]
  12. Int J Biol Macromol. 2024 Feb;258(Pt 2):129051 [PMID: 38159703]
  13. Appl Soft Comput. 2020 Nov;96:106610 [PMID: 32834798]
  14. BMC Infect Dis. 2022 Aug 17;22(1):694 [PMID: 35978312]
  15. Phys Eng Sci Med. 2020 Jun;43(2):635-640 [PMID: 32524445]
  16. Micromachines (Basel). 2022 Sep 25;13(10): [PMID: 36295946]
  17. Inflamm Res. 2023 Nov;72(10-11):1933-1940 [PMID: 36416944]
  18. Neural Comput Appl. 2021;33(10):4915-4928 [PMID: 32836902]
  19. Int J Med Inform. 2022 Sep;165:104832 [PMID: 35842978]
  20. Int J Environ Res Public Health. 2022 Apr 22;19(9): [PMID: 35564493]
  21. Int J Infect Dis. 2021 Jul;108:53-56 [PMID: 33930542]
  22. Inflamm Res. 2021 Apr;70(4):407-428 [PMID: 33640999]
  23. Sci Rep. 2022 Feb 14;12(1):2467 [PMID: 35165290]
  24. Appl Soft Comput. 2022 Jul;123:108966 [PMID: 35582662]
  25. J Microbiol Immunol Infect. 2021 Apr;54(2):159-163 [PMID: 32265180]
  26. Appl Soft Comput. 2022 Nov;129:109588 [PMID: 36061418]
  27. SN Comput Sci. 2022;3(4):286 [PMID: 35578678]
  28. Inflamm Res. 2022 Apr;71(4):377-396 [PMID: 35292834]
  29. Appl Soft Comput. 2020 Nov;96:106691 [PMID: 33519327]
  30. Sci Rep. 2022 Dec 26;12(1):22377 [PMID: 36572709]
  31. Clin Epidemiol Glob Health. 2021 Jan-Mar;9:26-33 [PMID: 32838058]
  32. Eur Radiol. 2021 Aug;31(8):6096-6104 [PMID: 33629156]
  33. Biomed Pharmacother. 2022 Feb;146:112550 [PMID: 34959116]
  34. Med Biol Eng Comput. 2022 Aug;60(8):2245-2255 [PMID: 35668230]
  35. J Microbiol. 2022 Mar;60(3):308-320 [PMID: 35235179]
  36. Multimed Tools Appl. 2023;82(9):14135-14152 [PMID: 36196269]
  37. Inflamm Res. 2022 Aug;71(7-8):923-947 [PMID: 35751653]
  38. Sci Rep. 2020 Dec 4;10(1):21256 [PMID: 33277553]
  39. Viruses. 2020 Sep 01;12(9): [PMID: 32883050]

Word Cloud

Created with Highcharts 10.0.0mortalityinfectiousdiseasepredictingdatacanlearningCOVID-19bloodtestmachinepredictnetworkdaysSARS-CoV-2virusinducesacuterespiratoryillnesscommonlyreferreddesignatedpandemicWorldHealthOrganizationduehighlynatureassociatedpublichealthrisksposesgloballyIdentifyingcriticalfactorsessentialimprovingpatienttherapyUnliketypescomputedtomographyscansx-radiationultrasoundsbasicresultswidelyaccessibleaidpresentresearchadvocatesutilizationMLmethodologieslikelihoodlikeleveragingAgeLDHlactatedehydrogenaselymphocytesneutrophilshs-CRPhigh-sensitivityC-reactiveproteinfiveextremelypotentcharacteristicscombinedaccurately96%casescombiningXGBoostfeatureimportanceneuralclassificationoptimalapproachexceptionalaccuracyalongachievingprecisionrate90%16eventstudiessuggestedmodel'sexcellentpredictiveperformancepracticalityconfirmedtestingthreeinstancesdependedoutcomecarefullyanalyzingidentifyingpatternssignificantbiomarkersinsightfulinformationobtainedsimpleapplicationstudyofferspotentialremediesacceleratedecision-makingtargetedmedicaltreatmentswithinhealthcaresystemsutilizingtimelyaccuratereliablemethodReal-timeenduranceindicatorsystemscientificdecisionsusingrapidprocessingBiomarkersDecisiontreeInfectiousMachineNeuralRandomforest

Similar Articles

Cited By