A dynamic generative model can extract interpretable oscillatory components from multichannel neurophysiological recordings.

Proloy Das, Mingjian He, Patrick L Purdon
Author Information
  1. Proloy Das: Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, United States. ORCID
  2. Mingjian He: Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, United States. ORCID
  3. Patrick L Purdon: Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, United States. ORCID

Abstract

Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.

Keywords

References

  1. Neural Comput. 2017 Aug;29(8):2055-2075 [PMID: 28562213]
  2. Eur J Neurosci. 2018 Oct;48(7):2454-2465 [PMID: 28960497]
  3. Physiol Rev. 2010 Jul;90(3):1195-268 [PMID: 20664082]
  4. Sleep. 2011 Mar 01;34(3):283-91A [PMID: 21358845]
  5. Neuroimage. 2011 Apr 15;55(4):1528-35 [PMID: 21276858]
  6. Trends Cogn Sci. 2016 Dec;20(12):916-930 [PMID: 27743685]
  7. Neural Netw. 2000 May-Jun;13(4-5):411-30 [PMID: 10946390]
  8. Neuroimage. 2014 Feb 15;87:96-110 [PMID: 24239590]
  9. Phys Rev Res. 2020 Apr-Jun;2(2): [PMID: 33718881]
  10. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3377-86 [PMID: 23129622]
  11. Neuroimage. 2022 Jun;253:119093 [PMID: 35288283]
  12. Neuron. 2013 Dec 4;80(5):1112-28 [PMID: 24314724]
  13. Neural Comput. 1995 Nov;7(6):1129-59 [PMID: 7584893]
  14. Neuroimage. 2014 Feb 1;86:446-60 [PMID: 24161808]
  15. Sci Rep. 2023 Jul 7;13(1):11031 [PMID: 37419933]
  16. Sci Rep. 2022 Sep 24;12(1):15940 [PMID: 36153353]
  17. Psychophysiology. 2000 Mar;37(2):163-78 [PMID: 10731767]
  18. Med Biol Eng Comput. 1997 Mar;35(2):135-40 [PMID: 9136207]
  19. Nat Neurosci. 2020 Dec;23(12):1655-1665 [PMID: 33230329]
  20. Science. 2004 Jun 25;304(5679):1926-9 [PMID: 15218136]
  21. Elife. 2017 Jan 24;6: [PMID: 28117662]
  22. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:21-24 [PMID: 36086427]
  23. Philos Trans A Math Phys Eng Sci. 2012 Dec 31;371(1984):20110534 [PMID: 23277597]
  24. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2207831120 [PMID: 36897972]
  25. Brain Topogr. 2018 Mar;31(2):186-201 [PMID: 28983770]
  26. Nat Neurosci. 2011 Feb;14(2):139-42 [PMID: 21270781]
  27. J Neurosci Methods. 2008 Mar 15;168(2):494-9 [PMID: 18061683]
  28. Psychophysiology. 2007 Jan;44(1):39-49 [PMID: 17241139]
  29. Neural Comput. 2017 Feb;29(2):332-367 [PMID: 27870609]
  30. Neuroimage. 2014 Sep;98:487-505 [PMID: 24990357]
  31. Neuroimage. 2021 Oct 15;240:118330 [PMID: 34237443]
  32. IEEE Trans Biomed Eng. 2014 May;61(5):1555-64 [PMID: 24759284]
  33. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4740-4743 [PMID: 30441408]
  34. Neuroimage. 2019 Jan 15;185:361-378 [PMID: 30342235]
  35. Neuroimage. 2006 Jul 1;31(3):968-80 [PMID: 16530430]
  36. Neural Comput. 1999 Jan 1;11(1):157-92 [PMID: 9950728]
  37. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8832-7 [PMID: 21555565]
  38. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):E1142-51 [PMID: 23487781]
  39. Elife. 2021 Sep 27;10: [PMID: 34569936]
  40. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8 [PMID: 21930901]
  41. Elife. 2023 Nov 29;12: [PMID: 38018501]
  42. J Neural Eng. 2015 Dec;12(6):066020 [PMID: 26501393]
  43. Neural Comput. 1999 Feb 15;11(2):417-41 [PMID: 9950738]

Grants

  1. R01 AG054081/NIA NIH HHS
  2. R01 AG056015/NIA NIH HHS
  3. U54 MH091657/NIMH NIH HHS
  4. R01AG054081-01A1/NIH HHS

MeSH Term

Humans
Electroencephalography
Models, Neurological
Magnetoencephalography
Brain
Bayes Theorem

Word Cloud

Created with Highcharts 10.0.0componentmethodsrecordingsusingactivitynumberdynamicssourcecomponentsgenerativemodelanalysisoscillatoryneurophysiologicalmultichannelunderlyingpatternsseparationcanmethodrepresentationparametersoscillation-humanneuroscienceModernperformedsensorarraysablerecordincreasinglyhighchannelsnumbering100s1000sOftenlower-dimensionalresponsibleobservedrepresentationsdifficultreliablyidentifyexistingattemptsummarizemultivariaterelationshipsposthocmannerunivariateanalysescurrentblindrevealappealingdeterminingincludeassessingstatisticalsignificanceinterpretingrequiresextensivemanualinterventionsubjectivejudgmentpracticedifficultiesselectioninterpretationoccurlargepartlackspatio-temporaldescribenovelanchoreddescribedbio-physicallyinspiredstate-spacegoverningreadilycapturetemporalreferpropertiesmixingweightssensorsoscillationsinferreddata-drivenfashionwithinBayesianframeworkemployinginstanceexpectationmaximizationalgorithmanalyzehigh-dimensionalelectroencephalographymagnetoencephalographystudiesillustratepotentialutilitydatadynamicextractinterpretablecorticaldynamicalmodelsstatespace

Similar Articles

Cited By (3)