Integrated transcriptome and metabolome analysis of salinity tolerance in response to foliar application of choline chloride in rice ( L.).

Jingxin Huo, Minglong Yu, Naijie Feng, Dianfeng Zheng, Rui Zhang, Yingbin Xue, Aaqil Khan, Hang Zhou, Wanqi Mei, Xiaole Du, Xuefeng Shen, Liming Zhao, Fengyan Meng
Author Information
  1. Jingxin Huo: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  2. Minglong Yu: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  3. Naijie Feng: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  4. Dianfeng Zheng: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  5. Rui Zhang: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  6. Yingbin Xue: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  7. Aaqil Khan: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  8. Hang Zhou: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  9. Wanqi Mei: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  10. Xiaole Du: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  11. Xuefeng Shen: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  12. Liming Zhao: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
  13. Fengyan Meng: College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Abstract

Introduction: Salt stress is a major abiotic stress that affects crop growth and productivity. Choline Chloride (CC) has been shown to enhance salt tolerance in various crops, but the underlying molecular mechanisms in rice remain unclear.
Methods: To investigate the regulatory mechanism of CC-mediated salt tolerance in rice, we conducted morpho-physiological, metabolomic, and transcriptomic analyses on two rice varieties (WSY, salt-tolerant, and HHZ, salt-sensitive) treated with 500 mg·L CC under 0.3% NaCl stress.
Results: Our results showed that foliar application of CC improved morpho-physiological parameters such as root traits, seedling height, seedling strength index, seedling fullness, leaf area, photosynthetic parameters, photosynthetic pigments, starch, and fructose content under salt stress, while decreasing soluble sugar, sucrose, and sucrose phosphate synthase levels. Transcriptomic analysis revealed that CC regulation combined with salt treatment induced changes in the expression of genes related to starch and sucrose metabolism, the citric acid cycle, carbon sequestration in photosynthetic organs, carbon metabolism, and photosynthetic antenna proteins in both rice varieties. Metabolomic analysis further supported these findings, indicating that photosynthesis, carbon metabolism, and carbon fixation pathways were crucial in CC-mediated salt tolerance.
Discussion: The combined transcriptomic and metabolomic data suggest that CC treatment enhances rice salt tolerance by activating distinct transcriptional cascades and phytohormone signaling, along with multiple antioxidants and unique metabolic pathways. These findings provide a basis for further understanding the mechanisms of metabolite synthesis and gene regulation induced by CC in rice in response to salt stress, and may inform strategies for improving crop resilience to salt stress.

Keywords

References

  1. Theor Appl Genet. 2019 Apr;132(4):851-870 [PMID: 30759266]
  2. J Integr Plant Biol. 2024 Apr;66(4):731-748 [PMID: 38482956]
  3. Placenta. 2015 Jun;36(6):631-7 [PMID: 25896522]
  4. Sci Rep. 2020 Apr 10;10(1):6183 [PMID: 32277136]
  5. PLoS One. 2021 Apr 29;16(4):e0250897 [PMID: 33914816]
  6. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):10001-5 [PMID: 11481443]
  7. BMC Plant Biol. 2023 Nov 16;23(1):569 [PMID: 37968598]
  8. J Appl Genet. 2017 May;58(2):163-177 [PMID: 27878453]
  9. Plant Physiol Biochem. 2022 Aug 15;185:112-122 [PMID: 35671588]
  10. Methods Mol Biol. 2021;2238:339-375 [PMID: 33471343]
  11. Physiol Mol Biol Plants. 2024 Jan;30(1):123-136 [PMID: 38435855]
  12. BMC Plant Biol. 2023 Sep 29;23(1):455 [PMID: 37770835]
  13. Photosynth Res. 2021 Dec;150(1-3):117-135 [PMID: 32632535]
  14. Biotechnol Genet Eng Rev. 2022 Oct 17;:1-37 [PMID: 36254096]
  15. J Food Sci Technol. 2016 Aug;53(8):3166-3174 [PMID: 27784911]
  16. Plant Sci. 2014 Jun;223:79-98 [PMID: 24767118]
  17. J Exp Bot. 2001 May;52(358):1117-21 [PMID: 11432928]
  18. Front Plant Sci. 2015 Sep 09;6:712 [PMID: 26442026]
  19. 3 Biotech. 2018 Sep;8(9):383 [PMID: 30148033]
  20. Ecotoxicol Environ Saf. 2021 Sep 1;220:112369 [PMID: 34090109]
  21. Plant Physiol. 2023 Dec 30;194(1):190-208 [PMID: 37503807]
  22. Microbiol Res. 2023 Jan;266:127225 [PMID: 36240664]
  23. Innovation (Camb). 2020 Apr 24;1(1):100017 [PMID: 34557705]
  24. Sci Rep. 2019 Jul 3;9(1):9590 [PMID: 31270436]
  25. BMC Genomics. 2024 Feb 12;25(1):166 [PMID: 38347506]
  26. PLoS One. 2023 Jun 14;18(6):e0286505 [PMID: 37315011]
  27. BMC Plant Biol. 2024 Jan 10;24(1):41 [PMID: 38195408]
  28. Plant Physiol Biochem. 2021 Jun;163:367-375 [PMID: 33930628]
  29. BMC Plant Biol. 2024 Mar 26;24(1):216 [PMID: 38532340]
  30. Physiol Plant. 2024 Mar-Apr;176(2):e14275 [PMID: 38566267]
  31. Nat Commun. 2021 Dec 9;12(1):7163 [PMID: 34887412]
  32. Sci Total Environ. 2022 Oct 15;843:156817 [PMID: 35750176]
  33. Dose Response. 2021 Nov 20;19(4):15593258211055026 [PMID: 34819814]
  34. Metabolites. 2024 Feb 27;14(3): [PMID: 38535302]
  35. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  36. J Biol Chem. 2013 Sep 13;288(37):26688-96 [PMID: 23900844]
  37. Biomed Res Int. 2019 Jul 18;2019:6534745 [PMID: 31396532]
  38. J Plant Physiol. 2022 Jan;268:153583 [PMID: 34871988]
  39. Sci Rep. 2023 Mar 1;13(1):3497 [PMID: 36859499]
  40. Plants (Basel). 2024 Mar 09;13(6): [PMID: 38592827]
  41. Plants (Basel). 2024 Apr 28;13(9): [PMID: 38732430]
  42. Plant Physiol Biochem. 2024 Feb;207:108420 [PMID: 38324953]

Links to CNCB-NGDC Resources

Word Cloud

Created with Highcharts 10.0.0saltricestressCCtolerancecarbonphotosyntheticmetabolismseedlingsucroseanalysiscropmechanismsCC-mediatedmorpho-physiologicalmetabolomictranscriptomicvarietiesfoliarapplicationparametersstarchregulationcombinedtreatmentinducedfindingsphotosynthesispathwaysresponsetranscriptomemetabolomeIntroduction:SaltmajorabioticaffectsgrowthproductivityCholineChlorideshownenhancevariouscropsunderlyingmolecularremainunclearMethods:investigateregulatorymechanismconductedanalysestwoWSYsalt-tolerantHHZsalt-sensitivetreated500mg·L03%NaClResults:resultsshowedimprovedroottraitsheightstrengthindexfullnessleafareapigmentsfructosecontentdecreasingsolublesugarphosphatesynthaselevelsTranscriptomicrevealedchangesexpressiongenesrelatedcitricacidcyclesequestrationorgansantennaproteinsMetabolomicsupportedindicatingfixationcrucialDiscussion:datasuggestenhancesactivatingdistincttranscriptionalcascadesphytohormonesignalingalongmultipleantioxidantsuniquemetabolicprovidebasisunderstandingmetabolitesynthesisgenemayinformstrategiesimprovingresilienceIntegratedsalinitycholinechlorideL

Similar Articles

Cited By