Linking mechanochemistry with the green chemistry principles: Review article.

Sergi Arfelis, Ana I Mart��n-Perales, Remy Nguyen, Antonio P��rez, Igor Cherubin, Christophe Len, Irene Malpartida, Alba Bala, Pere Fullana-I-Palmer
Author Information
  1. Sergi Arfelis: UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
  2. Ana I Mart��n-Perales: Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland.
  3. Remy Nguyen: Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France.
  4. Antonio P��rez: Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland.
  5. Igor Cherubin: Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland.
  6. Christophe Len: Chimie ParisTech, Institute of Chemistry for Life and Health Sciences, CNRS, PSL Research University, 11 rue Pierre et Marie Curie, Paris, F-75005, France.
  7. Irene Malpartida: Deasyl, S.A., Plan-les-Ouates, Geneva, Switzerland.
  8. Alba Bala: UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
  9. Pere Fullana-I-Palmer: UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.

Abstract

The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020-2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications.

Keywords

References

  1. ChemSusChem. 2021 May 20;14(10):2145-2162 [PMID: 33835716]
  2. Biotechnol Biofuels Bioprod. 2022 Mar 17;15(1):31 [PMID: 35300735]
  3. Chem Sci. 2018 Mar 7;9(12):3080-3094 [PMID: 29780455]
  4. J Hazard Mater. 2020 Jun 5;391:122183 [PMID: 32036308]
  5. J Hazard Mater. 2020 Jul 5;393:122487 [PMID: 32208333]
  6. Sci Total Environ. 2020 Nov 15;743:140733 [PMID: 32673916]
  7. Resour Conserv Recycl. 2021 Dec;175:1-13 [PMID: 35350408]
  8. J Environ Manage. 2020 Sep 15;270:110914 [PMID: 32721348]
  9. Angew Chem Int Ed Engl. 2019 Mar 11;58(11):3285-3299 [PMID: 30417972]
  10. Angew Chem Int Ed Engl. 2014 Jun 10;53(24):6193-7 [PMID: 24764165]
  11. Carbohydr Polym. 2022 Jun 1;285:119258 [PMID: 35287871]
  12. Chem Soc Rev. 2013 Sep 21;42(18):7649-59 [PMID: 23344926]
  13. J Hazard Mater. 2021 Aug 5;415:125556 [PMID: 33752086]
  14. Chemosphere. 2021 Oct;280:130659 [PMID: 33934000]
  15. Environ Pollut. 2020 Sep;264:114797 [PMID: 32559874]
  16. Sci Total Environ. 2021 Apr 15;765:142722 [PMID: 33268250]
  17. Conserv Biol. 2015 Dec;29(6):1596-605 [PMID: 26032263]
  18. ChemSusChem. 2021 Jul 6;14(13):2682-2688 [PMID: 33882180]
  19. Chemosphere. 2022 Apr;293:133647 [PMID: 35063558]
  20. Waste Manag. 2021 Nov;135:428-436 [PMID: 34619624]
  21. Sci Total Environ. 2023 May 20;874:162482 [PMID: 36858230]
  22. Nanomaterials (Basel). 2022 Jan 03;12(1): [PMID: 35010110]
  23. Chemosphere. 2022 Jan;287(Pt 4):132421 [PMID: 34600929]
  24. J Hazard Mater. 2021 Apr 5;407:124374 [PMID: 33243637]
  25. J Hazard Mater. 2020 Jun 15;392:122510 [PMID: 32193123]
  26. ChemSusChem. 2018 Mar 9;11(5):888-896 [PMID: 29380543]
  27. Bioresour Technol. 2015 Feb;177:298-301 [PMID: 25496951]
  28. J Environ Sci (China). 2021 Jun;104:399-414 [PMID: 33985742]
  29. ACS Sustain Chem Eng. 2022 Apr 18;10(15):4862-4871 [PMID: 35574430]
  30. Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1799-802 [PMID: 25529541]
  31. Bioresour Technol. 2019 Feb;273:687-691 [PMID: 30448067]
  32. ChemSusChem. 2022 Apr 7;15(7):e202102535 [PMID: 35137539]
  33. Chemosphere. 2012 Jul;88(5):548-53 [PMID: 22472100]
  34. Sci Total Environ. 2022 May 15;821:153256 [PMID: 35065117]
  35. Chemosphere. 2021 Jul;274:129772 [PMID: 33545595]
  36. Sci Total Environ. 2019 Jan 1;646:1516-1527 [PMID: 30235636]
  37. Carbohydr Polym. 2022 Aug 15;290:119462 [PMID: 35550763]
  38. Int J Biol Macromol. 2022 May 15;207:1038-1047 [PMID: 35364203]
  39. Ecotoxicol Environ Saf. 2021 Feb;209:111841 [PMID: 33387772]
  40. Front Chem. 2023 Nov 27;11:1306182 [PMID: 38090349]
  41. Nat Chem. 2013 Jan;5(1):66-73 [PMID: 23247180]
  42. Chem Soc Rev. 2012 Jan 7;41(1):413-47 [PMID: 21892512]
  43. J Hazard Mater. 2021 Jul 15;414:125436 [PMID: 33676250]
  44. Sci Total Environ. 2023 Mar 25;866:161094 [PMID: 36566846]
  45. J Hazard Mater. 2021 Oct 5;419:126466 [PMID: 34323704]
  46. ACS Cent Sci. 2017 Jan 25;3(1):13-19 [PMID: 28149948]