Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics.

Adriana S Rodrigues, Jorge G S Batista, Murilo �� V Rodrigues, Velaphi C Thipe, Luciene A R Minarini, Patricia S Lopes, Ademar B Lug��o
Author Information
  1. Adriana S Rodrigues: Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, S��o Paulo, Brazil.
  2. Jorge G S Batista: Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, S��o Paulo, Brazil.
  3. Murilo �� V Rodrigues: Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, S��o Paulo, Brazil.
  4. Velaphi C Thipe: Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States.
  5. Luciene A R Minarini: Federal University of S��o Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, S��o Paulo, Brazil.
  6. Patricia S Lopes: Federal University of S��o Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, S��o Paulo, Brazil.
  7. Ademar B Lug��o: Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, S��o Paulo, Brazil.

Abstract

Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.

Keywords

References

  1. Molecules. 2022 Nov 07;27(21): [PMID: 36364482]
  2. Biomolecules. 2021 Feb 17;11(2): [PMID: 33671333]
  3. Food Chem. 2021 Oct 15;359:129859 [PMID: 33957323]
  4. Sci Rep. 2020 Jul 30;10(1):12805 [PMID: 32732959]
  5. Sci Rep. 2024 May 3;14(1):10224 [PMID: 38702368]
  6. mSystems. 2020 Sep 8;5(5): [PMID: 32900873]
  7. Front Microbiol. 2022 Feb 03;12:705673 [PMID: 35211096]
  8. Int J Nanomedicine. 2020 May 19;15:3551-3562 [PMID: 32547013]
  9. J Appl Microbiol. 2024 Apr 1;135(4): [PMID: 38471695]
  10. Adv Healthc Mater. 2023 Oct;12(27):e2301157 [PMID: 37392145]
  11. Nanomaterials (Basel). 2022 Jun 10;12(12): [PMID: 35745352]
  12. Nat Commun. 2021 Jun 7;12(1):3331 [PMID: 34099682]
  13. Sci Rep. 2021 Mar 16;11(1):5996 [PMID: 33727607]
  14. Front Microbiol. 2016 Nov 16;7:1831 [PMID: 27899918]
  15. Nanoscale Adv. 2022 Jan 18;4(3):911-915 [PMID: 36131825]
  16. ACS Omega. 2023 Nov 22;8(48):46236-46251 [PMID: 38075786]
  17. Sci Rep. 2022 Sep 09;12(1):15254 [PMID: 36085334]
  18. Biofilm. 2022 Oct 15;4:100088 [PMID: 36303845]
  19. Int J Nanomedicine. 2023 May 10;18:2485-2502 [PMID: 37192897]
  20. Microorganisms. 2023 Feb 01;11(2): [PMID: 36838334]
  21. J Nanobiotechnology. 2022 Jun 7;20(1):262 [PMID: 35672712]
  22. Heliyon. 2021 Sep 20;7(9):e08033 [PMID: 34611564]
  23. J Funct Biomater. 2023 Jan 14;14(1): [PMID: 36662094]
  24. Heliyon. 2021 Apr 30;7(4):e06923 [PMID: 34007921]
  25. Beilstein J Nanotechnol. 2021 May 14;12:440-461 [PMID: 34104622]
  26. Antibiotics (Basel). 2023 Jul 31;12(8): [PMID: 37627684]
  27. Front Microbiol. 2019 Dec 04;10:2709 [PMID: 31866956]
  28. Adv Colloid Interface Sci. 2020 Oct;284:102246 [PMID: 32977142]
  29. Int J Mol Sci. 2021 Jul 04;22(13): [PMID: 34281254]
  30. Nanomaterials (Basel). 2020 Feb 09;10(2): [PMID: 32050443]
  31. Plants (Basel). 2023 Mar 22;12(6): [PMID: 36987100]
  32. Front Chem. 2022 Aug 29;10:952006 [PMID: 36105303]
  33. Front Microbiol. 2023 Nov 15;14:1293363 [PMID: 38033593]
  34. J Inorg Organomet Polym Mater. 2022;32(4):1213-1222 [PMID: 34840542]
  35. Front Bioeng Biotechnol. 2021 Apr 20;9:652362 [PMID: 33959599]
  36. Pathogens. 2021 Jun 29;10(7): [PMID: 34209937]
  37. Int J Nanomedicine. 2022 Apr 26;17:1851-1864 [PMID: 35502235]
  38. Int J Mol Sci. 2020 Oct 16;21(20): [PMID: 33081366]
  39. Nanoscale. 2022 Dec 15;14(48):18143-18156 [PMID: 36449011]
  40. Int J Biol Macromol. 2019 Mar 1;124:148-154 [PMID: 30447360]
  41. Biometals. 2021 Dec;34(6):1313-1328 [PMID: 34564808]
  42. Int J Mol Sci. 2022 Aug 17;23(16): [PMID: 36012520]
  43. Int J Nanomedicine. 2021 Oct 22;16:7181-7194 [PMID: 34712048]
  44. Pharmaceutics. 2022 May 21;14(5): [PMID: 35631691]
  45. J Proteome Res. 2006 Apr;5(4):916-24 [PMID: 16602699]
  46. Prep Biochem Biotechnol. 2021;51(1):54-68 [PMID: 32701049]
  47. J Nanobiotechnology. 2021 Sep 27;19(1):291 [PMID: 34579731]
  48. Food Chem. 2023 Jan 30;400:133960 [PMID: 36063680]
  49. Int J Mol Sci. 2021 Nov 22;22(22): [PMID: 34830442]
  50. J Genet Eng Biotechnol. 2023 Nov 21;21(1):127 [PMID: 37985623]
  51. Antioxidants (Basel). 2021 Dec 07;10(12): [PMID: 34943062]
  52. ACS Appl Mater Interfaces. 2023 Jun 14;15(23):27774-27788 [PMID: 37278364]
  53. Int J Nanomedicine. 2019 Feb 25;14:1469-1487 [PMID: 30880959]
  54. Int J Nanomedicine. 2020 Oct 13;15:7841-7859 [PMID: 33116504]
  55. Biometals. 2023 Aug;36(4):865-876 [PMID: 36586061]
  56. Saudi J Biol Sci. 2022 Nov;29(11):103457 [PMID: 36267912]
  57. Metallomics. 2018 Apr 25;10(4):557-564 [PMID: 29637212]
  58. Sci Rep. 2022 Mar 09;12(1):3869 [PMID: 35264654]
  59. Environ Res. 2022 May 1;207:112202 [PMID: 34655607]
  60. Molecules. 2022 Nov 06;27(21): [PMID: 36364438]
  61. Appl Microbiol Biotechnol. 2022 Jun;106(11):3973-3984 [PMID: 35670851]
  62. Bioprocess Biosyst Eng. 2021 Mar;44(3):443-452 [PMID: 33040186]
  63. ACS Omega. 2020 Mar 02;5(10):5520-5528 [PMID: 32201844]
  64. Int J Nanomedicine. 2013;8:4277-90 [PMID: 24235826]
  65. Pharmaceuticals (Basel). 2022 Feb 03;15(2): [PMID: 35215306]
  66. Saudi J Biol Sci. 2021 Jul;28(7):3633-3640 [PMID: 34220213]
  67. Nanomaterials (Basel). 2018 Aug 31;8(9): [PMID: 30200373]
  68. J Appl Microbiol. 2022 Jan;132(1):244-255 [PMID: 34134177]
  69. Chem Biol Drug Des. 2023 Mar;101(3):469-478 [PMID: 34453485]
  70. Vet Med Sci. 2021 Sep;7(5):1551-1557 [PMID: 34156766]
  71. Water Res. 2020 Feb 1;169:115229 [PMID: 31783256]
  72. PLoS One. 2022 Aug 10;17(8):e0272844 [PMID: 35947573]
  73. Sci Rep. 2023 Sep 12;13(1):15048 [PMID: 37700007]
  74. J Med Chem. 2019 Jul 11;62(13):5923-5943 [PMID: 30735392]
  75. Int J Nanomedicine. 2021 Jul 16;16:4831-4846 [PMID: 34295158]
  76. ACS Appl Bio Mater. 2020 Nov 16;3(11):7722-7733 [PMID: 35019512]
  77. ACS Omega. 2023 Jun 26;8(27):24371-24386 [PMID: 37457474]
  78. Sci Rep. 2023 May 19;13(1):8152 [PMID: 37208391]
  79. Biosensors (Basel). 2019 Jun 10;9(2): [PMID: 31185689]
  80. Chem Zvesti. 2022;76(12):7313-7325 [PMID: 35992611]
  81. Molecules. 2022 Aug 20;27(16): [PMID: 36014547]
  82. Pharmacogn Mag. 2018 Jan;13(Suppl 4):S828-S833 [PMID: 29491640]
  83. J Ayurveda Integr Med. 2020 Jan - Mar;11(1):37-44 [PMID: 30120058]
  84. Front Bioeng Biotechnol. 2023 Apr 13;11:1177151 [PMID: 37122851]
  85. J Basic Microbiol. 2021 Nov;61(11):993-1001 [PMID: 34520075]
  86. Nanomaterials (Basel). 2021 Jun 27;11(7): [PMID: 34199123]
  87. IEEE Trans Nanobioscience. 2023 Oct;22(4):956-966 [PMID: 37071524]
  88. Molecules. 2022 Mar 21;27(6): [PMID: 35335369]
  89. Food Chem Toxicol. 2016 Nov;97:327-335 [PMID: 27523291]
  90. Microsc Res Tech. 2020 Jan;83(1):72-80 [PMID: 31617656]
  91. Colloids Surf B Biointerfaces. 2019 Apr 1;176:62-69 [PMID: 30594704]
  92. ACS Appl Nano Mater. 2022 Mar 25;5(3):3030-3064 [PMID: 36568315]
  93. Nanomaterials (Basel). 2020 Aug 09;10(8): [PMID: 32784939]
  94. Nat Nanotechnol. 2018 Jan;13(1):65-71 [PMID: 29203912]
  95. J Fungi (Basel). 2022 Jun 08;8(6): [PMID: 35736095]
  96. Int J Mol Sci. 2016 Sep 13;17(9): [PMID: 27649147]
  97. J Proteome Res. 2020 Aug 7;19(8):3109-3122 [PMID: 32567865]
  98. Pathology. 2022 Jun;54(4):453-459 [PMID: 34844745]
  99. Crit Rev Microbiol. 2013 Nov;39(4):373-83 [PMID: 22928774]
  100. J Photochem Photobiol B. 2020 Apr;205:111836 [PMID: 32172135]
  101. J Biol Inorg Chem. 2023 Jun;28(4):439-450 [PMID: 37083842]
  102. J Appl Microbiol. 2022 Jan;132(1):209-220 [PMID: 34176212]
  103. Front Pharmacol. 2019 Oct 04;10:1153 [PMID: 31636564]
  104. Environ Res. 2024 May 1;248:118313 [PMID: 38280527]
  105. Nat Nanotechnol. 2021 Sep;16(9):996-1003 [PMID: 34155383]
  106. Sci Rep. 2024 Mar 4;14(1):5324 [PMID: 38438447]
  107. Sci Rep. 2021 Oct 26;11(1):21047 [PMID: 34702916]
  108. Microb Pathog. 2022 Sep;170:105678 [PMID: 35820580]
  109. Nanomaterials (Basel). 2021 Aug 17;11(8): [PMID: 34443916]
  110. Microbiol Spectr. 2023 Jun 15;11(3):e0028023 [PMID: 37078875]
  111. ACS Appl Mater Interfaces. 2021 Aug 11;13(31):36769-36783 [PMID: 34319072]
  112. Microb Drug Resist. 2022 Mar;28(3):293-305 [PMID: 35005985]
  113. J Toxicol Environ Health A. 2017;80(23-24):1276-1289 [PMID: 29020531]
  114. Environ Pollut. 2022 Jan 15;293:118506 [PMID: 34793904]
  115. ACS Omega. 2022 Jul 25;7(31):27216-27229 [PMID: 35967026]
  116. Int J Nanomedicine. 2020 Oct 28;15:8295-8310 [PMID: 33149577]
  117. Front Microbiol. 2020 Jun 23;11:1143 [PMID: 32655511]
  118. Nanoscale Res Lett. 2018 Oct 4;13(1):315 [PMID: 30288618]
  119. Int J Nanomedicine. 2019 Oct 03;14:7975-7985 [PMID: 31632012]
  120. Artif Cells Nanomed Biotechnol. 2020 Dec;48(1):672-682 [PMID: 32075448]
  121. Antibiotics (Basel). 2023 Feb 08;12(2): [PMID: 36830259]

Word Cloud

Created with Highcharts 10.0.0antimicrobialAgNPssilverpotentialnanoparticlesmechanismsactionpropertiesdueapplicationsbacteriaeffectsantibioticsbacterialproteinreviewproteomicresistanceNanoparticlesplaycrucialrolefieldnanotechnologyofferingdifferentsurfaceareaattributedsmallsizeAmongattractedsignificantattentiondatebackancientmedicinalpracticescontemporarycommercialproductscontainingionspossessbroad-spectrumbiocidalfungivirusesMycobacteriumadditionexhibitingsynergisticcombinedcertainunderlyingincludegenerationoxygen-reactivespeciesdamageDNArupturecellmembranesinhibitionsynthesisRecentstudieshighlightedeffectivenessvariousclinicallyrelevantstrainscombatantibiotic-resistantpathogensinvestigatesexertspecialfocusactivityplanktonicbiofilmsFurthermorediscussesbiomedicalnon-preparationantibioticformulationsalsoaddressingissueAdvancesnanoparticles:comprehensiveagentselucidatedproteomicsantibiofilmmechanismnanomaterialsexpressionanalysis

Similar Articles

Cited By (3)