NPCC4: Tail risk, climate drivers of extreme heat, and new methods for extreme event projections.

Luis Ortiz, Christian Braneon, Radley Horton, Daniel Bader, Philip Orton, Vivien Gornitz, Bernice Rosenzweig, Timon McPhearson, Lauren Smalls-Mantey, Hadia Sheerazi, Franco A Montalto, Mobin Rahimi Golkhandan, Colin Evans, Arthur DeGaetano, Evan Mallen, Latonya Carter, Kathryn McConnell, Talea Mayo, Maya Buchanan
Author Information
  1. Luis Ortiz: Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia, USA. ORCID
  2. Christian Braneon: CUNY Institute for Demographic Research (CIDR), City University of New York, New York City, New York, USA. ORCID
  3. Radley Horton: Columbia Climate School, Columbia University, New York City, New York, USA.
  4. Daniel Bader: NASA Goddard Institute for Space Studies, New York City, New York, USA.
  5. Philip Orton: Stevens Institute of Technology, Hoboken, New Jersey, USA.
  6. Vivien Gornitz: NASA Goddard Institute for Space Studies, New York City, New York, USA.
  7. Bernice Rosenzweig: Department of Environmental Science, Sarah Lawrence College, Bronxville, New York, USA.
  8. Timon McPhearson: Urban Systems Lab, The New School, New York City, New York, USA.
  9. Lauren Smalls-Mantey: New York City Department of Health and Mental Hygiene, New York City, New York, USA.
  10. Hadia Sheerazi: Rocky Mountain Institute, New York City, New York, USA.
  11. Franco A Montalto: Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
  12. Mobin Rahimi Golkhandan: Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
  13. Colin Evans: Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA.
  14. Arthur DeGaetano: Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA.
  15. Evan Mallen: Urban Climate Lab, School of City and Regional Planning, Georgia Institute of Technology, Atlanta, Georgia, USA.
  16. Latonya Carter: Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia, USA.
  17. Kathryn McConnell: Department of Sociology, The University of British Columbia, Vancouver, British Columbia, CA.
  18. Talea Mayo: Department of Mathematics, Emory University, Atlanta, Georgia, USA.
  19. Maya Buchanan: WSP USA, Portland, Oregon, USA.

Abstract

We summarize historic New York City (NYC) climate change trends and provide the latest scientific analyses on projected future changes based on a range of global greenhouse gas emissions scenarios. Building on previous NPCC assessment reports, we describe new methods used to develop the projections of record for sea level rise, temperature, and precipitation for NYC, across multiple emissions pathways and analyze the issue of the "hot models" associated with the 6th phase of the Coupled Model Intercomparison Project (CMIP6) and their potential impact on NYC's climate projections. We describe the state of the science on temperature variability within NYC and explain both the large-scale and regional dynamics that lead to extreme heat events, as well as the local physical drivers that lead to inequitable distributions of exposure to extreme heat. We identify three areas of tail risk and potential for its mischaracterization, including the physical processes of extreme events and the effects of a changing climate. Finally, we review opportunities for future research, with a focus on the hot model problem and the intersection of spatial resolution of projections with gaps in knowledge in the impacts of the climate signal on intraurban heat and heat exposure.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7575-7580 [PMID: 30910972]
  2. Nature. 2015 Jun 25;522(7557):465-9 [PMID: 26108856]
  3. Health Aff (Millwood). 2022 Feb;41(2):171-178 [PMID: 35130057]
  4. Nature. 2023 Oct;622(7983):528-536 [PMID: 37853149]
  5. Nature. 2023 Feb;614(7948):471-478 [PMID: 36792738]
  6. J Adv Model Earth Syst. 2022 Dec;14(12):e2022MS003389 [PMID: 37035628]
  7. Nat Commun. 2023 Aug 22;14(1):5095 [PMID: 37607914]
  8. Curr Clim Change Rep. 2020;6(2):47-54 [PMID: 32626649]
  9. Nat Commun. 2023 Jul 25;14(1):4254 [PMID: 37491344]
  10. Science. 2018 Jun 22;360(6395):1335-1339 [PMID: 29930133]
  11. Ecotoxicol Environ Saf. 2022 Jun 1;237:113521 [PMID: 35447472]
  12. Ann N Y Acad Sci. 2024 Sep;1539(1):13-48 [PMID: 38826131]
  13. Healthcare (Basel). 2016 Sep 07;4(3): [PMID: 27618121]
  14. Ann N Y Acad Sci. 2019 Mar;1439(1):126-173 [PMID: 30875123]
  15. Ann N Y Acad Sci. 2019 Mar;1439(1):30-70 [PMID: 30875118]
  16. Environ Res Lett. 2018 Jun;13(6): [PMID: 30250497]
  17. Sci Total Environ. 2022 Mar 10;811:151326 [PMID: 34757097]
  18. Ann N Y Acad Sci. 2024 Sep;1539(1):185-240 [PMID: 38922909]
  19. Science. 2008 Feb 1;319(5863):573-4 [PMID: 18239110]
  20. Nat Commun. 2021 May 18;12(1):2720 [PMID: 34006886]
  21. Nat Commun. 2015 Nov 10;6:8798 [PMID: 26554381]
  22. Ann N Y Acad Sci. 2024 Sep;1539(1):77-126 [PMID: 39159311]
  23. J Geophys Res Oceans. 2016 Dec 31;Volume 121(Iss 12):8904-8929 [PMID: 31709133]
  24. Commun Earth Environ. 2023;4(1):365 [PMID: 38665200]
  25. SSM Popul Health. 2021 Apr 20;14:100793 [PMID: 33997243]
  26. J Geophys Res Oceans. 2019 Sep;124(9):6435-6458 [PMID: 31763114]
  27. Sci Total Environ. 2017 Feb 1;579:495-505 [PMID: 27894802]
  28. Sci Adv. 2020 Jun 26;6(26):eaaz4876 [PMID: 32637596]
  29. Science. 2008 Sep 12;321(5895):1481-4 [PMID: 18687921]
  30. Nature. 2019 Feb;566(7742):58-64 [PMID: 30728522]
  31. Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11195-11200 [PMID: 31110015]
  32. J Geophys Res Atmos. 2019 Jul 16;124(13):6904-6918 [PMID: 31598448]
  33. Nature. 2021 May;593(7857):83-89 [PMID: 33953408]
  34. J Gen Intern Med. 2023 May;38(6):1534-1537 [PMID: 36746831]
  35. Sci Data. 2015 Aug 18;2:150042 [PMID: 26306206]
  36. Science. 2003 Jul 25;301(5632):479-83 [PMID: 12881562]
  37. Science. 2021 Oct 29;374(6567):eabe4943 [PMID: 34709911]
  38. Philos Trans A Math Phys Eng Sci. 2021 Apr 19;379(2195):20190547 [PMID: 33641460]
  39. Sci Adv. 2023 Sep 27;9(39):eadi8259 [PMID: 37756396]
  40. Science. 1982 Mar 26;215(4540):1611-4 [PMID: 17788485]
  41. Nature. 2022 May;605(7908):26-29 [PMID: 35508771]
  42. Ann N Y Acad Sci. 2019 Mar;1439(1):71-94 [PMID: 30875120]
  43. Ann N Y Acad Sci. 2015 Jan;1336:7 [PMID: 25688941]

Grants

  1. 1927167/National Science Foundation
  2. 1444755/National Science Foundation
  3. P2C HD041020/NICHD NIH HHS
  4. 193493/National Science Foundation
  5. 2117405/National Science Foundation Human-Environment and Geographical Sciences (HEGS) and Sociology Programs
  6. /AXA Research Fund

MeSH Term

Climate Change
Extreme Heat
Humans
New York City
Climate Models
Forecasting
Sea Level Rise
Hot Temperature
Greenhouse Gases

Chemicals

Greenhouse Gases

Word Cloud

Created with Highcharts 10.0.0climateextremeheatprojectionsriskNYCeventsfutureemissionsdescribenewmethodstemperaturepotentialscienceleadphysicaldriversexposuretailsummarizehistoricNewYorkCitychangetrendsprovidelatestscientificanalysesprojectedchangesbasedrangeglobalgreenhousegasscenariosBuildingpreviousNPCCassessmentreportsuseddeveloprecordsealevelriseprecipitationacrossmultiplepathwaysanalyzeissue"hotmodels"associated6thphaseCoupledModelIntercomparisonProjectCMIP6impactNYC'sstatevariabilitywithinexplainlarge-scaleregionaldynamicswelllocalinequitabledistributionsidentifythreeareasmischaracterizationincludingprocesseseffectschangingFinallyreviewopportunitiesresearchfocushotmodelproblemintersectionspatialresolutiongapsknowledgeimpactssignalintraurbanNPCC4:Taileventjusticeequity

Similar Articles

Cited By

No available data.