Cell dynamics revealed by microscopy advances.

Max A Hockenberry, Timothy A Daugird, Wesley R Legant
Author Information
  1. Max A Hockenberry: Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, USA.
  2. Timothy A Daugird: Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  3. Wesley R Legant: Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Electronic address: legantw@email.unc.edu.

Abstract

Cell biology emerges from spatiotemporally coordinated molecular processes. Recent advances in live-cell microscopy, fueled by a surge in optical, molecular, and computational technologies, have enabled dynamic observations from single molecules to whole organisms. Despite technological leaps, there is still an untapped opportunity to fully leverage their capabilities toward biological insight. We highlight how single-molecule imaging has transformed our understanding of biological processes, with a focus on chromatin organization and transcription in the nucleus. We describe how this was enabled by the close integration of new imaging techniques with analysis tools and discuss the challenges to make a comparable impact at larger scales from organelles to organisms. By highlighting recent successful examples, we describe an outlook of ever-increasing data and the need for seamless integration between dataset visualization and quantification to realize the full potential warranted by advances in new imaging technologies.

References

Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
Nat Methods. 2008 Feb;5(2):159-61 [PMID: 18176568]
Cell. 2019 Jul 11;178(2):491-506.e28 [PMID: 31155237]
Nat Methods. 2018 Dec;15(12):1090-1097 [PMID: 30478326]
Cell Syst. 2020 May 20;10(5):433-444.e5 [PMID: 32437685]
Cell. 2019 Mar 7;176(6):1502-1515.e10 [PMID: 30799036]
Science. 2004 Aug 13;305(5686):1007-9 [PMID: 15310904]
Methods. 2017 Feb 15;115:80-90 [PMID: 27713081]
Elife. 2019 May 24;8: [PMID: 31124784]
Cell Rep Methods. 2023 Dec 18;3(12):100655 [PMID: 38042149]
Biophys J. 2015 Jun 16;108(12):2807-15 [PMID: 26083920]
Biophys J. 1993 Nov;65(5):2021-40 [PMID: 8298032]
Nat Methods. 2019 Oct;16(10):1037-1044 [PMID: 31501548]
Nat Methods. 2014 Sep;11(9):951-8 [PMID: 25042785]
Cell. 2014 Mar 13;156(6):1274-1285 [PMID: 24630727]
Nat Methods. 2020 Aug;17(8):815-821 [PMID: 32719532]
ACS Chem Biol. 2008 Jun 20;3(6):373-82 [PMID: 18533659]
Trends Biochem Sci. 1995 Nov;20(11):448-55 [PMID: 8578587]
Science. 2014 Oct 24;346(6208):1257998 [PMID: 25342811]
Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250 [PMID: 25599551]
Elife. 2020 Nov 12;9: [PMID: 33179596]
Nat Methods. 2024 Feb;21(2):301-310 [PMID: 38167656]
Nat Methods. 2024 Aug;21(8):1371-1373 [PMID: 38858592]
Nat Biotechnol. 2003 Jan;21(1):86-9 [PMID: 12469133]
Mol Biol Cell. 2016 Jan 15;27(2):219-22 [PMID: 26768859]
Science. 2008 Nov 14;322(5904):1065-9 [PMID: 18845710]
Cell. 2018 Nov 15;175(5):1430-1442.e17 [PMID: 30454650]
Elife. 2017 May 03;6: [PMID: 28467304]
Nat Methods. 2015 Jul;12(7):641-4 [PMID: 25961414]
Nat Methods. 2017 Feb;14(2):149-152 [PMID: 28068315]
Nat Methods. 2022 Oct;19(10):1268-1275 [PMID: 36076037]
Nat Commun. 2024 May 16;15(1):4178 [PMID: 38755200]
Mol Cell. 2022 Jun 2;82(11):2084-2097.e5 [PMID: 35483357]
Science. 2007 May 25;316(5828):1191-4 [PMID: 17525339]
Elife. 2016 Aug 03;5: [PMID: 27484239]
Nucleic Acids Res. 2022 Jan 7;50(D1):D402-D412 [PMID: 34986601]
Nat Methods. 2011 Mar;8(3):246-9 [PMID: 21258339]
Nat Methods. 2022 Nov;19(11):1427-1437 [PMID: 36316563]
Methods Appl Fluoresc. 2018 Mar 16;6(2):022003 [PMID: 29422456]
Nat Methods. 2023 Jul;20(7):962-964 [PMID: 37434001]
Neuron. 2010 Jul 15;67(1):86-99 [PMID: 20624594]
Nat Methods. 2021 Jan;18(1):100-106 [PMID: 33318659]
Science. 1994 Feb 11;263(5148):802-5 [PMID: 8303295]
Nat Commun. 2016 Mar 04;7:10778 [PMID: 26940217]
Mol Cell. 2019 Nov 7;76(3):473-484.e7 [PMID: 31494034]
Nat Cell Biol. 2000 Mar;2(3):168-72 [PMID: 10707088]
J Cell Biol. 1981 Apr;89(1):141-5 [PMID: 7014571]
Nat Methods. 2022 Oct;19(10):1262-1267 [PMID: 36076039]
Science. 2022 Apr 29;376(6592):496-501 [PMID: 35420890]
Nature. 1956 Nov 24;178(4543):1194 [PMID: 13387666]
Nat Biotechnol. 2016 Dec;34(12):1267-1278 [PMID: 27798562]
Cell. 2024 Jan 18;187(2):331-344.e17 [PMID: 38194964]
Nature. 2023 Mar;615(7952):517-525 [PMID: 36859545]
Cell. 2018 Oct 18;175(3):859-876.e33 [PMID: 30318151]
Curr Biol. 1996 Feb 1;6(2):178-82 [PMID: 8673464]
Mol Cell. 2021 Sep 2;81(17):3560-3575.e6 [PMID: 34375585]
Biochem Soc Trans. 2023 Apr 26;51(2):557-569 [PMID: 36876879]
Dev Cell. 2016 Feb 22;36(4):462-75 [PMID: 26906741]
Nature. 2017 Jun 1;546(7656):162-167 [PMID: 28538724]
Nat Commun. 2023 Oct 13;14(1):6433 [PMID: 37833263]
Cell. 1987 Jul 31;50(3):361-8 [PMID: 3607874]
Nat Methods. 2022 Jul;19(7):829-832 [PMID: 35654950]
Nature. 2024 Feb;626(7997):169-176 [PMID: 38267577]
Nat Methods. 2008 Aug;5(8):695-702 [PMID: 18641657]
Cell. 2024 Jan 18;187(2):481-494.e24 [PMID: 38194965]
Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
Elife. 2018 Jan 04;7: [PMID: 29300163]
Genome Biol. 2006;7(10):R100 [PMID: 17076895]

Grants

  1. DP2 GM136653/NIGMS NIH HHS

MeSH Term

Humans
Animals
Microscopy
Chromatin
Cell Nucleus
Single Molecule Imaging

Chemicals

Chromatin

Word Cloud

Similar Articles

Cited By