The potential use of bacteriophages as antibacterial agents against Klebsiella pneumoniae.

Omid Gholizadeh, Hadi Esmaeili Gouvarchin Ghaleh, Mahdi Tat, Reza Ranjbar, Ruhollah Dorostkar
Author Information
  1. Omid Gholizadeh: Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  2. Hadi Esmaeili Gouvarchin Ghaleh: Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  3. Mahdi Tat: Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  4. Reza Ranjbar: Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
  5. Ruhollah Dorostkar: Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. r.dorost@yahoo.com.

Abstract

One of the most common bacteria that cause nosocomial infections is Klebsiella pneumonia (K. pneumoniae), especially in patients who are very sick and admitted to the intensive care unit (ICU). The frequency of multi-drug-resistant Klebsiella pneumoniae (MDRKP) has dramatically increased worldwide in recent decades, posing an urgent threat to public health. The Western world's bacteriophage (phage) studies have been revitalized due to the increasing reports of antimicrobial resistance and the restricted development and discovery of new antibiotics. These factors have also spurred innovation in other scientific domains. The primary agent in phage treatment is an obligately lytic organism (called bacteriophage) that kills the corresponding bacterial host while sparing human cells and lessening the broader effects of antibiotic usage on commensal bacteria. Phage treatment is developing quickly, leading to many clinical studies and instances of life-saving medicinal use. In addition, phage treatment has a few immunological adverse effects and consequences in addition to its usefulness. Since K. pneumoniae antibiotic resistance has made treating multidrug-resistant (MDR) infections challenging, phage therapy (PT) has emerged as a novel therapeutic strategy. The effectiveness of phages has also been investigated in K. pneumoniae biofilms and animal infection models. Compared with antibiotics, PT exhibits numerous advantages, including a particular lysis spectrum, co-evolution with bacteria to avoid the emergence of phage resistance, and a higher abundance and diversity of phage resources than found in antibiotics. Moreover, phages are eliminated in the absence of a host bacterium, which makes them the only therapeutic agent that self-regulates at the sites of infection. Therefore, it is essential to pay attention to the role of PT in treating these infections. This study summarizes the state of knowledge on Klebsiella spp. phages and provides an outlook on the development of phage-based treatments that target K. pneumoniae in clinical trials.

Keywords

References

  1. Expert Rev Anti Infect Ther. 2018 Oct;16(10):749-761 [PMID: 30207815]
  2. DNA Res. 2021 Aug 25;28(4): [PMID: 34390569]
  3. Int J Environ Res Public Health. 2020 Aug 28;17(17): [PMID: 32872324]
  4. Viruses. 2023 Apr 21;15(4): [PMID: 37113000]
  5. Methods Mol Biol. 2009;501:15-21 [PMID: 19066806]
  6. Viruses. 2019 Dec 02;11(12): [PMID: 31810319]
  7. Open Forum Infect Dis. 2023 Apr 20;10(5):ofad221 [PMID: 37234511]
  8. Sci Total Environ. 2024 Jan 1;906:167373 [PMID: 37758131]
  9. Microbiol Spectr. 2023 Aug 17;11(4):e0481222 [PMID: 37338376]
  10. PLoS One. 2012;7(3):e31698 [PMID: 22396736]
  11. Biology (Basel). 2024 Jan 04;13(1): [PMID: 38248459]
  12. Adv Colloid Interface Sci. 2017 Nov;249:100-133 [PMID: 28688779]
  13. Curr Opin Virol. 2022 Feb;52:24-29 [PMID: 34801778]
  14. Sci Rep. 2022 Feb 14;12(1):2458 [PMID: 35165352]
  15. Pharmaceuticals (Basel). 2019 Mar 11;12(1): [PMID: 30862020]
  16. J Microbiol Methods. 2005 Dec;63(3):219-28 [PMID: 15935499]
  17. Pharmaceuticals (Basel). 2021 Oct 03;14(10): [PMID: 34681243]
  18. Nature. 2020 Jan;577(7790):327-336 [PMID: 31942051]
  19. Infect Drug Resist. 2024 Feb 03;17:449-462 [PMID: 38333568]
  20. Front Microbiol. 2023 Jul 19;14:1156292 [PMID: 37538841]
  21. Iran J Microbiol. 2021 Oct;13(5):671-677 [PMID: 34900165]
  22. Ann Clin Microbiol Antimicrob. 2023 Feb 24;22(1):18 [PMID: 36829156]
  23. Front Microbiol. 2023 Aug 16;14:1227147 [PMID: 37655345]
  24. Microb Pathog. 2023 Aug;181:106199 [PMID: 37336428]
  25. Sci Rep. 2024 Jan 3;14(1):318 [PMID: 38172281]
  26. Bacteriophage. 2016 Oct 21;6(4):e1251379 [PMID: 28090384]
  27. Int J Biol Macromol. 2024 Mar;261(Pt 1):129550 [PMID: 38244734]
  28. Microbiol Spectr. 2022 Oct 26;10(5):e0235822 [PMID: 36165773]
  29. Front Cell Infect Microbiol. 2023 Jan 23;13:1077995 [PMID: 36756618]
  30. Antimicrob Agents Chemother. 2011 Apr;55(4):1358-65 [PMID: 21245450]
  31. Front Microbiol. 2019 Mar 21;10:574 [PMID: 30949158]
  32. Appl Microbiol Biotechnol. 2011 May;90(4):1333-45 [PMID: 21327407]
  33. FEMS Microbiol Rev. 2017 May 1;41(3):252-275 [PMID: 28521338]
  34. Clin Microbiol Infect. 2023 Dec;29(12):1601.e1-1601.e7 [PMID: 37652124]
  35. iScience. 2024 Jan 11;27(2):108875 [PMID: 38313058]
  36. Virus Genes. 2024 Apr;60(2):222-234 [PMID: 38279974]
  37. J Infect Dis. 2014 Dec 1;210(11):1734-44 [PMID: 25001459]
  38. PLoS Biol. 2023 May 23;21(5):e3002119 [PMID: 37220114]
  39. Biology (Basel). 2024 Jan 27;13(2): [PMID: 38392297]
  40. Int J Antimicrob Agents. 2024 Feb;63(2):107088 [PMID: 38218324]
  41. Virol J. 2013 Mar 28;10:100 [PMID: 23537199]
  42. Bacteriophage. 2011 Mar;1(2):86-93 [PMID: 22334864]
  43. Front Microbiol. 2015 Nov 13;6:1271 [PMID: 26617601]
  44. PLoS One. 2013 Aug 02;8(8):e70092 [PMID: 23936379]
  45. J Clin Med. 2019 Jun 28;8(7): [PMID: 31261755]
  46. J Antimicrob Chemother. 2014 Sep;69(9):2326-36 [PMID: 24872344]
  47. Nat Microbiol. 2016 Sep 27;1(10):16187 [PMID: 27670123]
  48. Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0090021 [PMID: 34228538]
  49. Sci Rep. 2023 Sep 13;13(1):15188 [PMID: 37704798]
  50. Virol J. 2021 Jan 6;18(1):9 [PMID: 33407669]
  51. Cell. 2022 Aug 4;185(16):2879-2898.e24 [PMID: 35931020]
  52. Curr Mol Pharmacol. 2024;17(1):e310323215266 [PMID: 36999690]
  53. Curr Microbiol. 2013 Mar;66(3):251-8 [PMID: 23143289]
  54. Viruses. 2018 Sep 09;10(9): [PMID: 30205588]
  55. Antibiotics (Basel). 2023 Jan 21;12(2): [PMID: 36830145]
  56. Front Microbiol. 2021 Apr 22;12:674068 [PMID: 33968007]
  57. Indian J Med Microbiol. 2024 Jan-Feb;47:100515 [PMID: 37981030]
  58. Int J Low Extrem Wounds. 2021 Mar;20(1):37-46 [PMID: 31752578]
  59. Front Microbiol. 2021 Jan 28;12:631794 [PMID: 33584632]
  60. Microb Genom. 2023 May;9(5): [PMID: 37141116]
  61. Biomed Res Int. 2015;2015:752930 [PMID: 25879036]
  62. PLoS One. 2020 Dec 14;15(12):e0243947 [PMID: 33315926]
  63. Emerg Microbes Infect. 2022 Dec;11(1):1015-1023 [PMID: 35259067]
  64. Nat Commun. 2022 Jan 18;13(1):302 [PMID: 35042848]
  65. Curr Microbiol. 2009 Sep;59(3):274-81 [PMID: 19484297]
  66. Clin Microbiol Rev. 2012 Oct;25(4):682-707 [PMID: 23034326]
  67. Biofouling. 2010 Aug;26(6):729-37 [PMID: 20711894]
  68. Front Microbiol. 2017 Jun 15;8:981 [PMID: 28663740]
  69. Microbiome. 2021 Apr 14;9(1):92 [PMID: 33853672]
  70. Microbiol Resour Announc. 2024 Jan 17;13(1):e0095423 [PMID: 38032190]
  71. J Med Microbiol. 2008 Dec;57(Pt 12):1508-1513 [PMID: 19018021]
  72. Microbiol Spectr. 2022 Dec 21;10(6):e0199422 [PMID: 36374021]
  73. Emerg Microbes Infect. 2020 Dec;9(1):771-774 [PMID: 32212918]
  74. J Glob Antimicrob Resist. 2020 Jun;21:34-41 [PMID: 31604128]
  75. Front Microbiol. 2018 Sep 11;9:2127 [PMID: 30254618]
  76. Lancet. 2024 Jun 1;403(10442):2426-2438 [PMID: 38797176]
  77. Microorganisms. 2021 Oct 28;9(11): [PMID: 34835377]
  78. Biomed Res Int. 2017;2017:3723254 [PMID: 29359149]
  79. Microbiol Mol Biol Rev. 2019 Oct 30;83(4): [PMID: 31666296]
  80. Microorganisms. 2020 Dec 16;8(12): [PMID: 33339331]
  81. Virus Genes. 2023 Aug;59(4):635-642 [PMID: 37259013]
  82. Int J Mol Sci. 2020 Jan 09;21(2): [PMID: 31936552]
  83. Microbiol Spectr. 2024 Jan 11;12(1):e0125823 [PMID: 38018985]
  84. Int J Burns Trauma. 2014 Oct 26;4(2):66-73 [PMID: 25356373]
  85. Nat Commun. 2023 Aug 29;14(1):5254 [PMID: 37644066]
  86. Future Microbiol. 2014;9(9):1071-81 [PMID: 25340836]
  87. mBio. 2021 Feb 23;12(1): [PMID: 33622728]
  88. Int Microbiol. 2024 Jan 22;: [PMID: 38252202]
  89. Pharmaceuticals (Basel). 2023 Nov 22;16(12): [PMID: 38139765]
  90. Annu Rev Med. 2022 Jan 27;73:197-211 [PMID: 34428079]
  91. Microb Pathog. 2023 Sep;182:106218 [PMID: 37422172]
  92. BMC Infect Dis. 2023 Oct 3;23(1):654 [PMID: 37789281]
  93. Front Cell Infect Microbiol. 2021 Jan 25;10:608402 [PMID: 33569355]
  94. Nat Rev Microbiol. 2020 Jun;18(6):344-359 [PMID: 32055025]
  95. Front Microbiol. 2016 Jun 15;7:934 [PMID: 27379064]
  96. Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61 [PMID: 27307579]
  97. Lancet Infect Dis. 2019 Jan;19(1):35-45 [PMID: 30292481]
  98. J Antimicrob Chemother. 2009 Dec;64(6):1212-8 [PMID: 19808232]
  99. Antibiotics (Basel). 2024 Feb 19;13(2): [PMID: 38391581]
  100. Clin Infect Dis. 2021 Jul 1;73(1):e144-e151 [PMID: 32699879]
  101. Microorganisms. 2024 Jan 25;12(2): [PMID: 38399657]
  102. Antibiotics (Basel). 2021 Jun 04;10(6): [PMID: 34199889]
  103. Crit Rev Microbiol. 2020 Feb;46(1):78-99 [PMID: 32091280]
  104. Antimicrob Agents Chemother. 2001 Mar;45(3):649-59 [PMID: 11181338]
  105. Ann Clin Microbiol Antimicrob. 2020 Jan 9;19(1):1 [PMID: 31918737]
  106. Virus Genes. 2024 Apr;60(2):208-221 [PMID: 38238612]
  107. N Engl J Med. 2018 Nov 1;379(18):1732-1744 [PMID: 30380384]

MeSH Term

Klebsiella pneumoniae
Bacteriophages
Phage Therapy
Klebsiella Infections
Humans
Animals
Anti-Bacterial Agents
Drug Resistance, Multiple, Bacterial
Cross Infection
Disease Models, Animal

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0pneumoniaephageKlebsiellaKbacteriainfectionsresistanceantibioticstreatmentPTphagesbacteriophagestudiesdevelopmentalsoagenthosteffectsantibioticclinicaluseadditiontreatingtherapeuticinfectionOnecommoncausenosocomialpneumoniaespeciallypatientssickadmittedintensivecareunitICUfrequencymulti-drug-resistantMDRKPdramaticallyincreasedworldwiderecentdecadesposingurgentthreatpublichealthWesternworld'srevitalizeddueincreasingreportsantimicrobialrestricteddiscoverynewfactorsspurredinnovationscientificdomainsprimaryobligatelylyticorganismcalledkillscorrespondingbacterialsparinghumancellslesseningbroaderusagecommensalPhagedevelopingquicklyleadingmanyinstanceslife-savingmedicinalimmunologicaladverseconsequencesusefulnessSincemademultidrug-resistantMDRchallengingtherapyemergednovelstrategyeffectivenessinvestigatedbiofilmsanimalmodelsComparedexhibitsnumerousadvantagesincludingparticularlysisspectrumco-evolutionavoidemergencehigherabundancediversityresourcesfoundMoreovereliminatedabsencebacteriummakesself-regulatessitesThereforeessentialpayattentionrolestudysummarizesstateknowledgesppprovidesoutlookphage-basedtreatmentstargettrialspotentialbacteriophagesantibacterialagentsAntibacterialAntibioticresidentBacteriophages

Similar Articles

Cited By