Learning minimal representations of stochastic processes with variational autoencoders.

Gabriel Fernández-Fernández, Carlo Manzo, Maciej Lewenstein, Alexandre Dauphin, Gorka Muñoz-Gil
Author Information
  1. Gabriel Fernández-Fernández: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
  2. Carlo Manzo: Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), C. de la Laura, 13, 08500 Vic, Spain.
  3. Maciej Lewenstein: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
  4. Alexandre Dauphin: ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain.
  5. Gorka Muñoz-Gil: Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria.

Abstract

Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended β-variational autoencoder architecture. By means of simulated data sets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.

Word Cloud

Created with Highcharts 10.0.0stochasticprocessesminimalparametersphenomenaapproachdescribedynamicsmethodenablesStochasticfoundnumerousapplicationssciencebroadlyusedmodelvarietynaturalDueintrinsicrandomnessuncertaintyhoweverdifficultcharacterizeintroduceunsupervisedmachinelearningdeterminesetrequiredeffectivelyprocessbuildsuponextendedβ-variationalautoencoderarchitecturemeanssimulateddatasetscorrespondingparadigmaticdiffusionmodelsshowcaseeffectivenessextractingrelevantaccuratelyFurthermoregenerationnewtrajectoriesfaithfullyreplicateexpectedbehaviorOverallautonomousdiscoveryunknowndescribinghenceenhancingcomprehensioncomplexacrossvariousfieldsLearningrepresentationsvariationalautoencoders

Similar Articles

Cited By