Pharmacological mechanisms of Ma Xing Shi Gan Decoction in treating influenza virus-induced pneumonia: intestinal microbiota and pulmonary glycolysis.

Lin Jiang, Chen Bai, Jingru Zhu, Chen Su, Yang Wang, Hui Liu, Qianqian Li, Xueying Qin, Xiaohong Gu, Tiegang Liu
Author Information
  1. Lin Jiang: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  2. Chen Bai: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  3. Jingru Zhu: Beijing Dingjitang Traditional Chinese Medicine Clinic Co., Ltd., Beijing, China.
  4. Chen Su: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  5. Yang Wang: Traditional Chinese Medicine Department, Beijing Jishuitan Hospital, Captial Medical University, Beijing, China.
  6. Hui Liu: Institute of Traditional Chinese Medicine for Epidemic Diseases, Beijing University of Chinese Medicine, Beijing, China.
  7. Qianqian Li: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  8. Xueying Qin: Department of Respiratory Medicine, The First Clinical College of Beijing University of Chinese Medicine, Beijing, China.
  9. Xiaohong Gu: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  10. Tiegang Liu: College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.

Abstract

Background: Influenza virus is one of the most common pathogens that cause viral pneumonia. During pneumonia, host immune inflammation regulation involves microbiota in the intestine and glycolysis in the lung tissues. In the clinical guidelines for pneumonia treatment in China, Ma Xing Shi Gan Decoction (MXSG) is a commonly prescribed traditional Chinese medicine formulation with significant efficacy, however, it remains unclear whether its specific mechanism of action is related to the regulation of intestinal microbiota structure and lung tissue glycolysis.
Objective: This study aimed to investigate the mechanism of action of MXSG in an animal model of influenza virus-induced pneumonia. Specifically, we aimed to elucidate how MXSG modulates intestinal microbiota structure and lung tissue glycolysis to exert its therapeutic effects on pneumonia.
Methods: We established a mouse model of influenza virus-induced pneumoni, and treated with MXSG. We observed changes in inflammatory cytokine levels and conducted 16S rRNA gene sequencing to assess the intestinal microbiota structure and function. Additionally, targeted metabolomics was performed to analyze lung tissue glycolytic metabolites, and Western blot and enzyme-linked immunosorbent assays were performed to assess glycolysis-related enzymes, lipopolysaccharides (LPSs), HIF-1a, and macrophage surface markers. Correlation analysis was conducted between the LPS and omics results to elucidate the relationship between intestinal microbiota and lung tissue glycolysis in pneumonia animals under the intervention of Ma Xing Shi Gan Decoction.
Results: MXSG reduced the abundance of Gram-negative bacteria in the intestines, such as Proteobacteria and , leading to reduced LPS content in the serum and lungs. This intervention also suppressed HIF-1a activity and lung tissue glycolysis metabolism, decreased the number of M1-type macrophages, and increased the number of M2-type macrophages, effectively alleviating lung damage caused by influenza virus-induced pneumonia.
Conclusion: MXSG can alleviate glycolysis in lung tissue, suppress M1-type macrophage activation, promote M2-type macrophage activation, and mitigate inflammation in lung tissue. This therapeutic effect appears to be mediated by modulating gut microbiota and reducing endogenous LPS production in the intestines. This study demonstrates the therapeutic effects of MXSG on pneumonia and explores its potential mechanism, thus providing data support for the use of traditional Chinese medicine in the treatment of respiratory infectious diseases.

Keywords

References

  1. Front Immunol. 2023 Oct 20;14:1147724 [PMID: 37928517]
  2. Front Immunol. 2021 Jul 19;12:693874 [PMID: 34349759]
  3. Int J Biol Sci. 2023 Jan 1;19(1):242-257 [PMID: 36594089]
  4. Front Immunol. 2022 Aug 23;13:981917 [PMID: 36119070]
  5. Cell Cycle. 2007 Apr 1;6(7):790-2 [PMID: 17404504]
  6. Int Immunopharmacol. 2023 May;118:110021 [PMID: 36966548]
  7. mBio. 2021 Dec 21;12(6):e0271021 [PMID: 34749531]
  8. FEBS J. 2020 Aug;287(16):3350-3369 [PMID: 32255251]
  9. Toxicol In Vitro. 2019 Mar;55:18-23 [PMID: 30448556]
  10. PLoS Pathog. 2018 Aug 20;14(8):e1007259 [PMID: 30125331]
  11. Front Immunol. 2022 Jan 20;13:773261 [PMID: 35126390]
  12. Biomed Pharmacother. 2021 Oct;142:111998 [PMID: 34385103]
  13. Cell Rep. 2017 May 23;19(8):1640-1653 [PMID: 28538182]
  14. BMC Biotechnol. 2011 Sep 01;11:84 [PMID: 21884612]
  15. BMC Syst Biol. 2010 May 13;4:61 [PMID: 20465796]
  16. Phytomedicine. 2020 Feb;67:153150 [PMID: 31958713]
  17. J Transl Med. 2024 Jun 15;22(1):570 [PMID: 38879538]
  18. Biomolecules. 2021 Dec 31;12(1): [PMID: 35053205]
  19. Microb Pathog. 2020 Oct;147:104351 [PMID: 32634615]
  20. Mediators Inflamm. 2013;2013:237921 [PMID: 23576850]
  21. Am J Physiol Lung Cell Mol Physiol. 2021 Jul 1;321(1):L65-L78 [PMID: 33851870]
  22. Sci Rep. 2020 Feb 3;10(1):1701 [PMID: 32015367]
  23. Front Immunol. 2022 Jan 26;12:828887 [PMID: 35154087]
  24. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  25. Int J Environ Res Public Health. 2020 Apr 29;17(9): [PMID: 32365515]
  26. Biomed Eng Online. 2022 Apr 21;21(1):27 [PMID: 35449051]
  27. Phytother Res. 2024 Apr;38(4):1799-1814 [PMID: 38330236]
  28. Immunity. 2015 Mar 17;42(3):393-4 [PMID: 25786167]
  29. J Biol Chem. 1961 Jul;236:1887-90 [PMID: 13686731]
  30. Genome Biol. 2020 Apr 28;21(1):99 [PMID: 32345342]
  31. Ann Intern Med. 2011 Aug 16;155(4):217-25 [PMID: 21844547]
  32. Vaccine. 2021 Oct 29;39(45):6573-6584 [PMID: 34602302]
  33. J Ethnopharmacol. 2020 May 10;253:112641 [PMID: 32017949]
  34. Immunity. 2021 Jun 8;54(6):1200-1218.e9 [PMID: 33951416]
  35. Crit Care. 2022 Jan 28;26(1):29 [PMID: 35090526]
  36. Cell. 2012 Feb 3;148(3):399-408 [PMID: 22304911]
  37. Microcirculation. 2014 Oct;21(7):649-63 [PMID: 24809727]
  38. Nat Commun. 2023 Feb 6;14(1):642 [PMID: 36746963]
  39. Gut Microbes. 2023 Dec;15(2):2271620 [PMID: 37953509]
  40. Cancer Lett. 2020 Feb 1;470:134-140 [PMID: 31733288]
  41. Int J Mol Sci. 2021 Jun 10;22(12): [PMID: 34200555]
  42. Front Immunol. 2023 Jan 26;14:1113883 [PMID: 36776889]
  43. Am J Physiol Cell Physiol. 2011 Mar;300(3):C385-93 [PMID: 21123733]
  44. PLoS Pathog. 2020 Feb 26;16(2):e1008334 [PMID: 32101596]
  45. Science. 2017 Aug 4;357(6350):498-502 [PMID: 28774928]
  46. Nutrients. 2020 Sep 10;12(9): [PMID: 32927776]
  47. Oncogene. 2006 Aug 7;25(34):4633-46 [PMID: 16892078]
  48. Biomed Pharmacother. 2023 Sep;165:115007 [PMID: 37327587]
  49. Virol Sin. 2021 Dec;36(6):1532-1542 [PMID: 34519916]
  50. Pharmacol Res. 2024 Aug;206:107278 [PMID: 38908613]
  51. Cell Metab. 2015 Jan 6;21(1):65-80 [PMID: 25565206]
  52. Biomed Pharmacother. 2021 Sep;141:111896 [PMID: 34246956]
  53. J Ethnopharmacol. 2012 Aug 30;143(1):57-67 [PMID: 22710290]
  54. Pharmacol Res. 2019 Aug;146:104292 [PMID: 31167111]
  55. Clin Infect Dis. 2020 Dec 17;71(10):2669-2678 [PMID: 32497191]
  56. Probiotics Antimicrob Proteins. 2020 Sep;12(3):798-808 [PMID: 31741313]
  57. Sci Rep. 2017 Dec 12;7(1):17360 [PMID: 29234060]
  58. Front Immunol. 2018 Feb 12;9:182 [PMID: 29483910]
  59. J Ethnopharmacol. 2023 Jan 30;301:115763 [PMID: 36183949]
  60. Front Microbiol. 2022 Aug 08;13:947112 [PMID: 36090063]
  61. Nat Prod Res. 2018 May;32(10):1224-1228 [PMID: 28504013]
  62. Zhong Xi Yi Jie He Za Zhi. 1990 Oct;10(10):600-2, 581 [PMID: 2268918]
  63. Front Pharmacol. 2020 Nov 26;11:581691 [PMID: 33324213]
  64. Virology. 2019 Apr;530:51-58 [PMID: 30780125]
  65. EMBO Rep. 2016 Dec;17(12):1721-1730 [PMID: 27856534]
  66. Pharmacol Res. 2020 Jul;157:104820 [PMID: 32360484]
  67. Cell. 2016 Oct 6;167(2):457-470.e13 [PMID: 27667687]
  68. J Ethnopharmacol. 2015 Mar 13;162:287-95 [PMID: 25593018]

Word Cloud

Created with Highcharts 10.0.0lungpneumoniamicrobiotaglycolysisMXSGtissueintestinalinfluenzaMaXingShiGanDecoctionvirus-inducedmechanismstructuretherapeuticmacrophageLPSvirusinflammationregulationtreatmenttraditionalChinesemedicineactionstudyaimedmodelelucidateeffectsinflammatoryconductedassessperformedHIF-1ainterventionreducedintestinesnumberM1-typemacrophagesM2-typeactivationBackground:InfluenzaonecommonpathogenscauseviralhostimmuneinvolvesintestinetissuesclinicalguidelinesChinacommonlyprescribedformulationsignificantefficacyhoweverremainsunclearwhetherspecificrelatedObjective:investigateanimalSpecificallymodulatesexertMethods:establishedmousepneumonitreatedobservedchangescytokinelevels16SrRNAgenesequencingfunctionAdditionallytargetedmetabolomicsanalyzeglycolyticmetabolitesWesternblotenzyme-linkedimmunosorbentassaysglycolysis-relatedenzymeslipopolysaccharidesLPSssurfacemarkersCorrelationanalysisomicsresultsrelationshipanimalsResults:abundanceGram-negativebacteriaProteobacterialeadingcontentserumlungsalsosuppressedactivitymetabolismdecreasedincreasedeffectivelyalleviatingdamagecausedConclusion:canalleviatesuppresspromotemitigateeffectappearsmediatedmodulatinggutreducingendogenousproductiondemonstratesexplorespotentialthusprovidingdatasupportuserespiratoryinfectiousdiseasesPharmacologicalmechanismstreatingpneumonia:pulmonaryH1N1response

Similar Articles

Cited By