Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed.

Ritu Sharma, Arpana Mittal, Varun Gupta, Neeraj K Aggarwal
Author Information
  1. Ritu Sharma: Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
  2. Arpana Mittal: Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
  3. Varun Gupta: Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India.
  4. Neeraj K Aggarwal: Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India. nkumar@kuk.ac.in. ORCID

Abstract

INTRODUCTION: Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets.
OBJECTIVE: The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes.
METHODOLOGY: We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters.
RESULTS: The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 ��C and pH 5.5, with kinetic parameters (Km���=���3.39��������10 M and a V of 7.092 mM/min) indicating efficient substrate affinity.
CONCLUSION: The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.

Keywords

References

  1. Bird Ranjana P, Michael Eskin NA (2021) The emerging role of phosphorus in human health. Adv Food Nutr Res 96:27���88. https://doi.org/10.1016/bs.afnr.2021.02.001 [DOI: 10.1016/bs.afnr.2021.02.001]
  2. Singh G, Kaur G, Williard K, Schoonover J, Nelson KA (2020) Managing phosphorus loss from agroecosystems of the Midwestern United States: A review. Agron J 10(4):561. https://doi.org/10.3390/agronomy10040561 [DOI: 10.3390/agronomy10040561]
  3. Bloot APM, Kalschne DL, Amaral JAS, Baraldi IJ, Canan C (2023) A review of phytic acid sources, obtention, and applications. Food Rev Int 39(1):73���92. https://doi.org/10.1080/87559129.2021.1906697 [DOI: 10.1080/87559129.2021.1906697]
  4. Rocky-Salimi K, Hashemi M, Safari M, Mousivand M (2016) A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis BS 46. J Adv Res 7(3):381���390. https://doi.org/10.1016/j.jare.2016.02.003 [DOI: 10.1016/j.jare.2016.02.003]
  5. Sperry J, Davison EK, Neville JC (2023) Phosphorus Sustainability: A Case for Phytic acid as a Biorenewable Platform. Green Chem. https://doi.org/10.1039/D3GC01421E [DOI: 10.1039/D3GC01421E]
  6. Alves NM, Guimar��es LHS, Piccoli RH, Cardoso PG (2016) Production and partial characterization of an extracellular phytase produced by Muscodor sp. under submerged fermentation. Adv Microbiol 6(1):23���32. https://doi.org/10.4236/aim.2016.61003 [DOI: 10.4236/aim.2016.61003]
  7. Naves LDP, Corr��a AD, Bertechini AG, Gomide EM, dos Santos CD (2012) Effect of ph and temperature on the activity of phytase products used in broiler nutrition. Braz J Poult Sci 14:181���185
  8. Zuo R, Chang J, Yin Q, Chen L, Chen Q, Yang X, Feng H (2010) Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiol Res 165(4):329���335. https://doi.org/10.1016/j.micres.2009.06.001 [DOI: 10.1016/j.micres.2009.06.001]
  9. Tian M, Yuan Q (2016) Optimization of phytase production from potato waste using Aspergillus ficuum. 3Biotech 6(2):1���8. https://doi.org/10.1007/s13205-016-0573-9 [DOI: 10.1007/s13205-016-0573-9]
  10. Wu J, Paudel P, Sun M, Joshi SR, Stout LM, Greiner R, Jaisi DP (2015) Mechanisms and pathways of phytate degradation: Evidence from oxygen isotope ratios of phosphate, HPLC, and phosphorus-31 NMR spectroscopy. Soil Sci Soci of Am J 79(6):1615���1628. https://doi.org/10.2136/sssaj2015.01.0002 [DOI: 10.2136/sssaj2015.01.0002]
  11. Liu X, Han R, Cao Y, Turner BL, Ma LQ (2022) Enhancing Phytate Availability in Soils and Phytate-P Acquisition by Plants: A Review. Environ Sci Technol 56(13):9196���9219. https://doi.org/10.1021/acs.est.2c00099 [DOI: 10.1021/acs.est.2c00099]
  12. Moura TF, Reis MP, Horna FA, N��brega IPT, Bello A, Donato DC, Sakomura NK (2023) A novel consensus bacterial 6-phytase variant improves the responses of laying hens fed an inorganic phosphorus-free diet with reduced energy and nutrients from 23 to 72 wk of age. Poult Sci 102(10):102949. https://doi.org/10.1016/j.psj.2023.102949 [DOI: 10.1016/j.psj.2023.102949]
  13. Van Vuuren DP, Bouwman AF, Beusen AH (2010) Phosphorus demand for the 1970���2100 period: a scenario analysis of resource depletion. Glob Environ Change 20(3):428���439. https://doi.org/10.1016/j.gloenvcha.2010.04.004 [DOI: 10.1016/j.gloenvcha.2010.04.004]
  14. Kisinyo P, Opala P (2020) Depletion of phosphate rock reserves and world food crisis: reality or hoax?
  15. Adeola O, Cowieson AJ (2011) Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J Anim Sci 89(10):3189���3218. https://doi.org/10.2527/jas.2010-3715 [DOI: 10.2527/jas.2010-3715]
  16. Jain J, Kumar A, Singh D, Singh B (2018) Purification and kinetics of a protease-resistant, neutral, and thermostable phytase from Bacillus subtilis subsp. subtilis JJBS250 ameliorating food nutrition. Prep biochem biotechnol 48(8):718���724. https://doi.org/10.1080/10826068.2018.1487848 [DOI: 10.1080/10826068.2018.1487848]
  17. Ciofalo V, Barton N, Kretz K, Baird J, Cook M, Shanahan D (2003) Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regul Toxicol Pharmacol 37(2):286���292. https://doi.org/10.1016/S0273-2300(03)00005-9 [DOI: 10.1016/S0273-2300(03)00005-9]
  18. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J App Microbiol 112(1):1���14. https://doi.org/10.1111/j.1365-2672.2011.05181.x [DOI: 10.1111/j.1365-2672.2011.05181.x]
  19. Rizwanuddin S, Kumar V, Naik B, Singh P, Mishra S, Rustagi S, Kumar V (2023) Microbial phytase: Their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. J Agri Food Res 12:100559
  20. Kaur P, Kunze G, Satyanarayana T (2007) Yeast phytases: present scenario and future perspectives. Crit Rev Biotechnol 27(2):93���109 [PMID: 17578705]
  21. Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM (2017) Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnol biofuels 10:1���19. https://doi.org/10.1186/s13068-017-0899-5 [DOI: 10.1186/s13068-017-0899-5]
  22. Ogunremi OR, Agrawal R, Sanni A (2020) Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J Genet Eng Biotechnol 18(1):16. https://doi.org/10.1186/s43141-020-00031-z [DOI: 10.1186/s43141-020-00031-z]
  23. Greppi A, Krych ��, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N, Jespersen L (2015) Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 205:81���89. https://doi.org/10.1016/j.ijfoodmicro.2015.04.011 [DOI: 10.1016/j.ijfoodmicro.2015.04.011]
  24. Hellstr��m A, Qvirist L, Svanberg U, Veide Vilg J, Andlid T (2015) Secretion of non-cell-bound phytase by the yeast Pichia kudriavzevii TY13. J Applied Microbiol 118(5):1126���1136. https://doi.org/10.1111/jam.12767 [DOI: 10.1111/jam.12767]
  25. Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci biotechnol biochem 64(4):841���844. https://doi.org/10.1271/bbb.64.841 [DOI: 10.1271/bbb.64.841]
  26. Singh PK, Khatta VK, Thakur RS (2003) Effect of phytase supplementation in maize based diet on growth performance and nutrients utilization of broiler chickens. Indian J Anim Sci 73(4):455���458
  27. Dersjant-Li Y, Awati A, Schulze H, Partridge G (2015) Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 95(5):878���896 [PMID: 25382707]
  28. White E, Bold R, Wealleans AL, Dersjant-Li Y, Kwakernaak C (2016) Effect of a Buttiauxella phytase on nutrient digestibility and performance in laying hens fed a diet without supplemental inorganic phosphorus. pp 16���17
  29. Bedford MR, Walk CL, O���Neill HM (2016) Assessing measurements in feed enzyme research: Phytase evaluations in broilers. J App Poult Res 25(2):305���314
  30. Sommerfeld V, Schollenberger M, K��hn I, Rodehutscord M (2018) Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poult Sci 97(4):1177���1188 [PMID: 29325118]
  31. Javadi M, Pascual JJ, Cambra-L��pez M, Mac��as-Vidal J, Donadeu A, Dupuy J, Cerisuelo A (2021) Effect of dietary mineral content and phytase dose on nutrient utilization, performance, egg traits and bone mineralization in laying hens from 22 to 31 weeks of age. Animals 11(6):1495 [PMID: 34064181]
  32. Mittal A, Singh G, Goyal V, Yadav A, Aggarwal NK (2012) Isolation and biochemical characterization of acido-thermophilic phytase producer yeast strain for potential application in poultry feed. Adv App Res 4(1):26���34
  33. Gulati HK, Chadha BS, Saini HS (2007) Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J Ind Microbiol Biotechnol 34(1):91���98 [PMID: 16967265]
  34. LaemmLi UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680���685. https://doi.org/10.1038/227680a0 [DOI: 10.1038/227680a0]
  35. Bae HD, Yanke LJ, Cheng KJ, Selinger LB (1999) A novel staining method for detecting phytase activity. J Microbiol Methods 39(1):17���22. https://doi.org/10.1016/s0167-7012(99)00096-2 [DOI: 10.1016/s0167-7012(99)00096-2]
  36. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Amer Chem Soc 56:658���666
  37. Spier MR, Letti LAJ, Woiciechowski AL, Soccol CR (2009) A simplified model for A. niger FS3 growth during phytase formation in solid state fermentation. Braz Arch Bio Technol 52:151���158. https://doi.org/10.1590/S1516-89132009000700020 [DOI: 10.1590/S1516-89132009000700020]
  38. Liu Z, Qi G, Yoon I (2002) Effect of yeast culture on production parameters and intestinal microflora in laying hens. In: Poultry science association 91st annual meeting abstracts, vol 3
  39. Kumari N, Roy P, Roy S, Parmar PK, Chakraborty S, Das S, Pandey N, Bose A, Bansal AK, Ghosh A (2022) Investigating the Role of the Reduced Solubility of the Pirfenidone-Fumaric Acid Cocrystal in Sustaining the Release Rate from Its Tablet Dosage Form by Conducting Comparative Bioavailability Study in Healthy Human Volunteers. Mol Pharm 19(5):1557���1572. https://doi.org/10.1021/acs.molpharmaceut.2c00052 [DOI: 10.1021/acs.molpharmaceut.2c00052]
  40. Bogar B, Szakacs G, Linden JC, Pandey A, Tengerdy RP (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30(3):183���189 [PMID: 12715256]
  41. Berikten D, Kivanc M (2014) Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Prep Biochem Biotechnol 44(8):834���848 [PMID: 24279930]
  42. Javed MM, Ahmed W, Zahoor S, Ul-Haq I (2010) Solid state culturing of thermophilic fungi for phytase production. Pak J Bot 42(5):3605���3611
  43. In M, Seo S, Oh N (2008) Fermentative production and application of acid phytase by Saccharomyces cerevisiae CY strain. Afr J Biotechnol 7(17)
  44. Li XY, Liu ZQ, Chi ZM (2008) Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology. Bioresour Technol 99(14):6386���6390. https://doi.org/10.1016/j.biortech.2007.11.065 [DOI: 10.1016/j.biortech.2007.11.065]
  45. Nampoothiri KM, Tomes GJ, Roopesh K, Szakacs G, Nagy V, Soccol CR, Pandey A (2004) Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl biochem biotechnol 118(1���3):205���214. https://doi.org/10.1385/abab:118:1-3:205 [DOI: 10.1385/abab]
  46. Tahir A, Mateen B, Saeed S, Uslu H (2010) Studies on the production of commercially important phytase from Aspergillus niger st-6 isolated from decaying organic soil. Micologia Aplicada Int 22(2):51���57
  47. Kanti A, Idris I, Sudiana IM (2020) Aspergillus niger Str 3 and Neurospora sitophila for phytase production on coconut oil cake supplemented with rice brand in solid-state fermentation. In IOP Conf Ser: Earth Environ Sci 439:012020
  48. Marlida Y, Delfita R, Adnadi P, Ciptaan G (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9(5):471���474
  49. Lee J, Choi Y, Lee PC, Kang S, Bok J, Cho J (2007) Recombinant production of Penicillium oxalicum PJ3 phytase in Pichia pastoris. World J Microbiol Biotechnol 23:443���446
  50. Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch biochem Biophy 382(1):105���112. https://doi.org/10.1006/abbi.2000.2021 [DOI: 10.1006/abbi.2000.2021]
  51. Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25(1���2):1���30. https://doi.org/10.1080/07388550590925383 [DOI: 10.1080/07388550590925383]
  52. Sato VS, Jorge JA, Guimar��es LHS (2016) Characterization of a thermotolerant phytase produced by Rhizopus microsporus var. microsporus biofilm on an inert support using sugarcane bagasse as carbon source. App Biochem Biotechnol 179:610���624
  53. Vohra A, Satyanarayana T (2002) Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687���691
  54. Ebune A, Al-Asheh S, Duvnjak Z (1995) Effects of phosphate, surfactants and glucose on phytase production and hydrolysis of phytic acid in canola meal by Aspergillus ficuum during solid-state fermentation. Bioresour technol 54(3):241���247
  55. Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237���243
  56. Battan B, Sharma J, Kuhad RC (2006) High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solid-state fermentation. World J Microbiol Biotechnol 22:1281���1287
  57. Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. App Biochem Biotechnol 102���103(1���6):251���260. https://doi.org/10.1385/abab:102-103:1-6:251 [DOI: 10.1385/abab]
  58. Jafari-Tapeh H, Hamidi-Esfahani Z, Azizi MH (2012) (2012) Culture condition improvement for phytase production in solid state fermentation by Aspergillus ficuum using statistical method. Int Scholarly Res Notices 1:479167
  59. Sasirekha B, Bedashree T, Champa KL (2012) Optimization and partial purification of extracellular phytase from Pseudomonas aeruginosa p6. Europ J Exp Biol 2(1):95���104
  60. Chandrasekharan M, Lakshmanaperumalsamy P, Chandramohan D (1991) Combined effect of environmental factors on spoilage bacteria
  61. Monteiro PS, Guimar��es VM, Melo RRD, Rezende STD (2015) Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance. Braz J Microbiol 46:251���260 [PMID: 26221114]
  62. Awad GEA, Helal MMI, Danial EN, Esawy MA (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi J Biol Sci 21:81���88. https://doi.org/10.1016/j.sjbs.2013.06.004 [DOI: 10.1016/j.sjbs.2013.06.004]
  63. Siddiqa A, Anwar Z, Rashid, U (2023) Isolation and statistical experimental design for the optimization of phytase production by a newly isolated strain, Aspergillus Terreus (OP028905). Journal of Xi���an Shiyou University, Natural Science Edition 19(6)
  64. Ajith S, Ghosh J, Shet D, ShreeVidhya S, Punith BD, Elangovan AV (2019) Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express 9(1):1���11
  65. Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcus laurentii AL 27. Folia Microbiol 53:29���34
  66. Kalsi HK, Singh R, Dhaliwal HS, Kumar V (2016) Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. 3Biotech 6(1):1���13
  67. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enz Microbial Technol 22(1):2���7
  68. Chaphalkar SR, Dey S (1998) Thermostable alkaline metalloprotease from newly isolated alkalophilic Streptomyces diastaticus strain SS1. Indian J Biochem Biophys 35(1):34���40 [PMID: 9699417]
  69. Rodr��guez-Fern��ndez DE, Rodr��guez-Le��n JA, Carvalho JCD, Thomaz-Soccol V, Parada JL, Soccol CR (2010) Recovery of phytase produced by solid-state fermentation on citrus peel. Braz Arch Bio Technol 53:1487���1496
  70. Ajith S, Shet D, Ghosh J, Elangovan AV (2018) Immobilised phytase production from Aspergillus foetidus MTCC 11682 using an optimized media. Biotechnol J Int 21(3):1���13
  71. K��osowski G, Mikulski D, Jankowiak O (2018) Extracellular phytase production by the wine yeast S. cerevisiae (Finarome Strain) during submerged fermentation. Molecules 23(4):848 [PMID: 29642482]
  72. Jalal MA, Scheideler SE (2001) Effect of supplementation of two different sources of phytase on egg production parameters in laying hens and nutrient digestiblity. Poult Sci 80(10):1463���1471 [PMID: 11599706]
  73. Khalique A, Ahmad F, Muhmud A, Younus M (2010) Effect of locally produced phytase on growth of layer chicks. Pak J Zoo 42(4):445���450
  74. Adekanle MA, Oloke JK, Adekunle OC, Bolaji OS (2023) Effects of phytase producing yeast in poultry feed mills. Annals of West University of Timisoara: Series of Biology 26(1)
  75. Ponnuvel P, Narayankutty K, Jalaludeen A, Anitha P (2015) Effect of phytase supplementation in low energy-protein diet on the production performance of layer chicken. Indian J Vet Sci Biotechnol 10(3):25���27
  76. Simons PC, Versteegh HA, Jongbloed AW, Kemme PA, Slump P, Bos KD, Wolters MG, Beudeker RF, Verschoor GJ (1990) Improvement of phosphorus availability by microbial phytase in broilers and pigs. British J Nutrition 64(2):525���540. https://doi.org/10.1079/bjn19900052 [DOI: 10.1079/bjn19900052]
  77. Yoo GY, Wang X, Choi S, Han K, Kang JC, Bai SC (2005) Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal. Aquaculture 243(1���4):315���322
  78. Bougouin A, Appuhamy JA, Kebreab E, Dijkstra J, Kwakkel RP, France J (2014) Effects of phytase supplementation on phosphorus retention in broilers and layers: a meta-analysis. Poult Sci 93(8):1981���1992. https://doi.org/10.3382/ps.2013-03820 [DOI: 10.3382/ps.2013-03820]
  79. Vohra A, Rastogi SK, Satyanarayana T (2006) Amelioration in growth and phosphorus assimilation of poultry birds using cell-bound phytase of Pichia anomala. World J Microbiol Biotechnol 22:553���558
  80. Fern��ndez SR, Ch��rraga S, ��vila-Gonzalez E (2019) Evaluation of a new generation phytase on phytate phosphorus release for egg production and tibia strength in hens fed a corn-soybean meal diet. Poult Sci 98(5):2087���2093 [PMID: 30590799]
  81. Saleh AA, Elsawee M, Soliman MM, Elkon RY, Alzawqari MH, Shukry M, Eltahan H (2021) Effect of bacterial or fungal phytase supplementation on the performance, egg quality, plasma biochemical parameters, and reproductive morphology of laying hens. Animals 11(2):540 [PMID: 33669736]
  82. Ren Y, Liu Y, Jiang K, Li L, Jiao N, Zhu Z, Li Y (2023) Effects of low-phosphorus diets supplemented with Phytase on the production performance, phosphorus-calcium metabolism, and bone metabolism of aged Hy-line Brown laying hens. Animals 13(6):1042 [PMID: 36978583]
  83. Liu N, Liu GH, Li FD, Sands JS, Zhang S, Zheng AJ, Ru YJ (2007) Efficacy of phytases on egg production and nutrient digestibility in layers fed reduced phosphorus diets. Poult Sci 86(11):2337���2342 [PMID: 17954583]
  84. Daramola OT, Jimoh OA (2015) Egg quality and laying performance of pullets fed different protein sources and Ronozyme-P supplementation. Tropical Animal Prod Investigations 18(1):18���24
  85. Englmaierov�� M, Sk��ivan M, Sk��ivanov�� E, ��erm��k L (2017) Limestone particle size and Aspergillus niger phytase in the diet of older hens. Ital J Anim Sci 16(4):608���615
  86. Bello A, Dersjant-Li Y, Korver DR (2020) Effects of dietary calcium and available phosphorus levels and phytase supplementation on performance, bone mineral density, and serum biochemical bone markers in aged white egg-laying hens. Poult Sci 99(11):5792���5801 [PMID: 33142497]
  87. Eltahan HM, Cho S, Rana MM, Saleh AA, Elkomy AE, Wadaan MA, Eltahan HM (2023) Dietary exogenous phytase improve egg quality, reproductive hormones, and prolongs the lifetime of the aging Hy-Line brown laying hens fed nonphytate phosphorus. Poult Sci 102(9):102895 [PMID: 37441904]

MeSH Term

6-Phytase
Pichia
Animals
Animal Feed
Chickens
Fermentation
Phytic Acid
Kinetics
Hydrogen-Ion Concentration
Temperature
Molecular Weight

Chemicals

6-Phytase
Phytic Acid

Word Cloud

Created with Highcharts 10.0.0phytaseproductionfermentationnutrientutilizationdietsfeedenzymeoptimizingsolid-statechickenpurifiedimprovedsubstratepHPhytasephytate-richsignificantpropertiespoultryefficientPichiapeeltemperatureFollowingincludingmolecularweightoptimalaffinitykineticparameters7purification5INTRODUCTION:recognizedabilityenhancenutritionalvaluefoodsgainedprominencesignificantlyboostedpreservingeconomicefficiencyutilizingnaturalsubstratesessentialfactorsstudyfocusesevaluatingeffectivenessenhancingOBJECTIVE:objectiveoptimizeviacharacterizeassessimpactobjectivesaimdeepenunderstandingphytase'srolenutritioncontributeformulationsagriculturaloutcomesMETHODOLOGY:utilizedkudriavzeviiFSMP-Y17yeastorangevariableslikeincubationtimesupplementingglucoseammoniumsulfateusingstandardtechniquescharacterizingRESULTS:optimizedconditionsyieldedremarkableyield0U/gdsexhibited64 kDadisplayedactivity55 ��CKm���=���339��������10 MV092 mM/minindicatingCONCLUSION:additionresultedimprovementsoverallperformanceincreasedintakeconversionratioenhancedbirdgrowthbetterphosphorusretentioneggqualityaddressingchallengesassociatedreducedavailabilityenvironmentalpollutionpromotesanimalwelfaresustainabilityProductioncharacterizationkudriaveviiFSMP-Y17andapplicationlayersLayersOptimizationOrangePoultrySolidState

Similar Articles

Cited By

No available data.