N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors.

Destiny Durante, Ryan Bott, Laura Cooper, Callum Owen, Kimberly M Morsheimer, J J Patten, Christian Zielinski, Norton P Peet, Robert A Davey, Irina N Gaisina, Lijun Rong, Terry W Moore
Author Information
  1. Destiny Durante: Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States. ORCID
  2. Ryan Bott: Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States.
  3. Laura Cooper: Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States.
  4. Callum Owen: Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States.
  5. Kimberly M Morsheimer: Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States. ORCID
  6. J J Patten: Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States. ORCID
  7. Christian Zielinski: UICentre: Drug Discovery, University of Illinois Chicago, Chicago, Illinois 60612, United States.
  8. Norton P Peet: Chicago BioSolutions Inc., Chicago, Illinois 60612, United States.
  9. Robert A Davey: Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, Massachusetts 02118, United States. ORCID
  10. Irina N Gaisina: Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States. ORCID
  11. Lijun Rong: Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60612, United States.
  12. Terry W Moore: Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60612, United States. ORCID

Abstract

Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.

References

  1. Nat Rev Microbiol. 2004 Feb;2(2):109-22 [PMID: 15043007]
  2. J Biomol Screen. 2014 Jan;19(1):100-7 [PMID: 23821643]
  3. Biochim Biophys Acta. 2013 Mar;1831(3):602-11 [PMID: 22960355]
  4. J Infect Dis. 2011 Nov;204 Suppl 3:S810-6 [PMID: 21987756]
  5. Viruses. 2019 Mar 19;11(3): [PMID: 30893774]
  6. Arch Virol. 2023 Aug 3;168(8):220 [PMID: 37537381]
  7. J Infect Dis. 1999 Feb;179 Suppl 1:S36-47 [PMID: 9988163]
  8. Viruses. 2020 Dec 31;13(1): [PMID: 33396288]
  9. Biol Chem Hoppe Seyler. 1994 Jul;375(7):447-50 [PMID: 7945993]
  10. PLoS Negl Trop Dis. 2017 Feb 23;11(2):e0005389 [PMID: 28231247]
  11. J Virol. 2015 May;89(10):5441-9 [PMID: 25741008]
  12. J Med Chem. 2018 Jun 14;61(11):4938-4945 [PMID: 29741894]
  13. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8426-31 [PMID: 21536871]
  14. Science. 2021 Jul 30;373(6554):541-547 [PMID: 34326236]
  15. Naturwissenschaften. 1999 Jan;86(1):8-17 [PMID: 10024977]
  16. J Mol Model. 2021 Jan 25;27(2):49 [PMID: 33495861]
  17. PLoS One. 2013;8(4):e60838 [PMID: 23573288]
  18. ACS Infect Dis. 2015 Jul 10;1(7):317-26 [PMID: 27622822]
  19. Virology. 2012 Mar 1;424(1):3-10 [PMID: 22222211]
  20. Nat Microbiol. 2021 May;6(5):617-629 [PMID: 33737748]
  21. J Pathol. 1985 Nov;147(3):199-209 [PMID: 4067737]
  22. Virology. 2011 Oct 25;419(2):72-83 [PMID: 21907381]
  23. J Med Chem. 2018 Feb 8;61(3):724-733 [PMID: 29272110]
  24. Nat Rev Dis Primers. 2020 Feb 20;6(1):13 [PMID: 32080199]
  25. J Med Chem. 2020 Oct 8;63(19):11085-11099 [PMID: 32886512]
  26. ACS Med Chem Lett. 2020 May 01;11(6):1160-1167 [PMID: 32550996]
  27. Emerg Microbes Infect. 2020 Dec;9(1):2245-2255 [PMID: 32975484]
  28. J Virol. 2006 Apr;80(8):4174-8 [PMID: 16571833]
  29. Antiviral Res. 2021 Nov;195:105180 [PMID: 34551346]
  30. J Pathol. 1984 Oct;144(2):73-9 [PMID: 6491834]
  31. PLoS One. 2016 Sep 09;11(9):e0162199 [PMID: 27611077]
  32. Biol Chem. 2019 Dec 18;401(1):31-46 [PMID: 31408430]
  33. Front Microbiol. 2011 Dec 09;2:242 [PMID: 22163227]
  34. N Engl J Med. 2019 Dec 12;381(24):2293-2303 [PMID: 31774950]
  35. PLoS Pathog. 2021 Feb 4;17(2):e1009312 [PMID: 33539432]
  36. Glob Health Sci Pract. 2020 Jun 30;8(2):178-182 [PMID: 32430358]
  37. Oncotarget. 2017 Jun 15;8(33):55750-55759 [PMID: 28903457]
  38. Adv Exp Med Biol. 2021;1339:131-137 [PMID: 35023100]
  39. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  40. J Med Chem. 2019 Mar 28;62(6):2928-2937 [PMID: 30785281]
  41. Antiviral Res. 2017 Sep;145:24-32 [PMID: 28645623]
  42. Science. 2024 Mar 15;383(6688):eadk6176 [PMID: 38484056]
  43. mBio. 2018 Jul 24;9(4): [PMID: 30042202]
  44. ACS Infect Dis. 2016 Mar 11;2(3):173-179 [PMID: 27347558]
  45. Int J Mol Sci. 2023 Mar 27;24(7): [PMID: 37047270]
  46. Proc Natl Acad Sci U S A. 2009 May 12;106(19):8003-8 [PMID: 19416892]
  47. J Med Chem. 2018 Jul 26;61(14):6293-6307 [PMID: 29920098]
  48. Sci Transl Med. 2013 Jun 19;5(190):190ra79 [PMID: 23785035]
  49. PLoS Pathog. 2010 Sep 16;6(9):e1001110 [PMID: 20862315]
  50. Am J Pathol. 2003 Dec;163(6):2347-70 [PMID: 14633608]
  51. J Cheminform. 2012 Jan 26;4:2 [PMID: 22281160]
  52. J Virol. 2015 Oct;89(19):9932-8 [PMID: 26202243]
  53. Antiviral Res. 2021 Oct;194:105161 [PMID: 34391783]
  54. J Med Chem. 2020 Jul 9;63(13):7211-7225 [PMID: 32490678]
  55. Nature. 2016 Jul 7;535(7610):169-172 [PMID: 27362232]
  56. Virchows Arch B Cell Pathol. 1975;18(1):51-60 [PMID: 167510]
  57. Annu Rev Virol. 2019 Sep 29;6(1):435-458 [PMID: 31567063]
  58. Int J Mol Sci. 2022 Feb 27;23(5): [PMID: 35269770]
  59. J Virol. 2005 Apr;79(8):4793-805 [PMID: 15795265]
  60. J Antimicrob Chemother. 2014 Aug;69(8):2123-31 [PMID: 24710028]

Grants

  1. R41 AI126971/NIAID NIH HHS
  2. R42 AI126971/NIAID NIH HHS

MeSH Term

Pyrroles
Antiviral Agents
Humans
Structure-Activity Relationship
Ebolavirus
Virus Internalization
Heterocyclic Compounds
Filoviridae
Marburgvirus

Chemicals

Pyrroles
Antiviral Agents
Heterocyclic Compounds

Word Cloud

Created with Highcharts 10.0.0EbolafiloviralvirustreatmentsN-substitutedpyrrole-basedheterocyclesentryantiviralactivitySincelargestfatalepidemic2014-2016severalconsecutiveoutbreaksrecentyearsincluding202120222023OngoingoutbreakprevalencelimitedFDA-approvedtherapeuticsemphasizeneednovelsmallmoleculeshowcasestructure-activityrelationshipdevelopmentpotentsubmicromolarinhibitiondiversefilovirusestarget-basedpseudovirusassayInhibitorvalidatedusingreplication-competentSudanMarburgvirusesMutationalanalysisusedmaptargetedregionwithinglycoproteinAntiviralcounter-screenphospholipidosisassaysperformeddemonstratereducedoff-targetinhibitorsFavorablepotencyselectivitydrug-likepropertiessupportpotentialbroad-spectrumantifiloviralN-SubstitutedPyrrole-BasedHeterocyclesBroad-SpectrumFiloviralEntryInhibitors

Similar Articles

Cited By